Esercizio sul piano inclinato

La forza peso è data dalla formula $F_p = mg$.

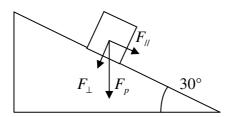
Allora F_{\parallel} e F_{\perp} possono essere scritte utilizzando l'angolo di inclinazione del piano oppure le grandezze geometriche:

	Angolo di inclinazione	Grandezze geometriche
Forza parallela	$F_{//} = F_p \sin(\alpha)$	$F_{\prime\prime} = \frac{h}{l} F_p$
Forza perpendicolare	$F_{\perp} = F_{p} \cos(\alpha)$	$F_{\perp} = \frac{b}{l} F_{p}$

1) Problema

Sia dato un piano inclinato di 30° privo di attrito su cui poggia una massa di 6 kg. Determinare l'accelerazione con cui scende il corpo.

Soluzione



L'equazione che descrive il moto del corpo è la seconda legge della dinamica

$$F = ma$$

Dove:

- F rappresenta la risultante di tutte le forze attive che determinano il moto del corpo;
- *m* la massa totale dei corpi sottoposti all'azione della forza risultante F;
- a è l'accelerazione dei corpi.

Allora
$$F = ma$$

Diventa considerando la forza attiva
$$F_{\parallel} = ma$$

Calcolo
$$F_{II} = F_p \sin(\alpha) = mg \sin(\alpha) = 6.9.8 \cdot \sin(30) = 29.4N$$

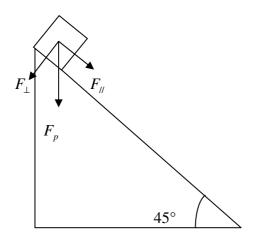
Sostituendo allora

$$29,4 = 6a \rightarrow a = 4,9 \frac{m}{s^2}$$

2) Problema

Sia dato un piano inclinato di 45°, lungo 2 metri e privo di attrito sulla cui sommità poggia una massa di 550g. Determinare l'accelerazione con cui scende il corpo e il tempo che impiega a scendere e la velocità con cui arriva alla fine del piano inclinato.

Soluzione



L'equazione che descrive il moto del corpo è la seconda legge della dinamica

$$F = ma$$

Diventa considerando la forza attiva $F_{II} = ma$

Calcolo
$$F_{II} = F_p \sin(\alpha) = mg \sin(\alpha) = 0.55 \cdot 9.8 \cdot \sin(45) = 3.8N$$

Sostituendo allora

$$3.8 = 0.55a \rightarrow a = 6.91 \frac{m}{s^2}$$

Poiché il moto lungo il piano è uniformemente accelerato il tempo che il corpo impiega a cadere è

$$t = \sqrt{\frac{2s}{a}} = \sqrt{\frac{2 \cdot 2}{6.91}} = 0.76s$$

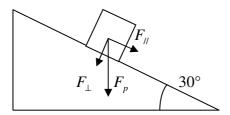
La velocità con cui arriva al termine del piano inclinato è:

$$v = v_0 + at = 6.91 \cdot 0.76 = 5.25 \frac{m}{s}$$
.

3) Problema

Sia dato un piano inclinato di 30° avente coefficiente di attrito $\mu = 0.08$ su cui poggia una massa di 8 kg. Determinare l'accelerazione con cui scende il corpo.

Soluzione



L'equazione che descrive il moto del corpo è la seconda legge della dinamica

$$F = ma$$

Poiché c'è attrito dobbiamo tener presente che l'attrito si oppone sempre alla forza attiva e che nel caso del piano inclinato la forza di attrito è data da $F_a = \mu F_{\perp}$.

Allora la formula F = ma diventa

$$F_{\prime\prime} - F_{a} = ma$$

$$F_{\prime\prime} - \mu F_{\perp} = ma$$

$$F_{II} = F_p \sin(\alpha) = mg \sin(30) = 8.9, 8.\sin(30) = 39,2N$$

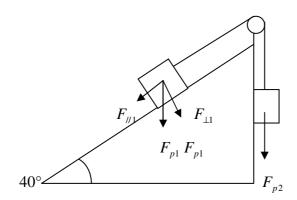
$$F_{\perp} = F_{p} \cos(\alpha) = mg \cos(30) = 8.9, 8 \cdot \cos(30) = 67,9N$$

$$F_{11} - \mu F_{\perp} = ma \implies 39.2 - 0.08 \cdot 67.9 = 8a$$

$$39,2-0,08\cdot67,9=8a \rightarrow 39,2-5,4=8a \rightarrow 33,8=8a \rightarrow a=4,23\frac{m}{s^2}$$

Dato un piano senza attrito inclinato di 40° considerare su di esso una massa $m_1 = 5kg$ collegata tramite un filo ed una carrucola, anch'essa senza attrito, ad un'altra massa $m_2 = 3kg$ lasciata libera verticalmente. Determinare l'accelerazione del sistema.

Soluzione



Il filo trasmette l'azione della forza peso della massa m_2 lungo la stessa direzione della componente $F_{//1}$ pertanto esse saranno responsabili del moto del sistema. Prendiamo come positivo il verso di $F_{//1}$, cioè quello che fa scendere il corpo lungo il piano inclinato. Con questa convenzione se l'accelerazione risultante è positiva il sistema si sposterà nel verso di trascinamento della massa 1, viceversa se l'accelerazione risultante è negativa il sistema si sposterà nel verso di trascinamento della massa 2.

L'equazione che determina il moto del sistema è:

$$F = ma$$

che diventa

$$F_{//1} - F_{p2} = (m_1 + m_2)a$$

$$F_{//1} = F_{p1} \sin(40) = 31,5N$$

$$F_2 = m_2 g = 29,4N$$

Sostituendo si ottiene

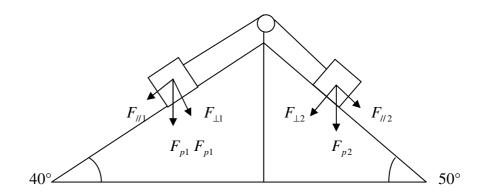
$$31,5 - 29,4 = (5+3)a$$

$$2,1 = 8a \rightarrow a = 0,26 \frac{m}{s^2}$$

Essendo a positiva il sistema si sposta nel verso di trascinamento della massa m_1 .

Dato un piano senza attrito inclinato di 40° considerare su di esso una massa $m_1=3kg$ collegata tramite un filo ed una carrucola, anch'essa senza attrito, ad un'altra massa $m_2=4kg$ disposta su un piano inclinato di 50° e avente stessa altezza del primo piano . Determinare l'accelerazione del sistema.

Soluzione



Il filo trasmette l'azione della forza di trascinamento $F_{//2}$ lungo la stessa direzione della componente attiva $F_{//1}$ pertanto esse saranno responsabili del moto del sistema. Prendiamo come positivo il verso di $F_{//1}$.

Allora 'equazione

$$F = ma$$

diventa

$$F_{//1} - F_{//2} = (m_1 + m_2)a$$

$$F_{//1} = F_{p1} \sin(40) = 18.9N$$

$$F_{//2} = F_{p2} \sin(50) = 30,1N$$

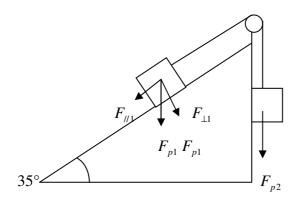
Allora

$$18,9-30,1=7a$$
-11,2=7a → $a=-1,6\frac{m}{s^2}$

Essendo a negativa il sistema si sposta nel verso di trascinamento della massa m_2 .

Dato un piano con coefficiente di attrito statico $\mu=0,41$ e inclinato rispetto l'orizzontale di 35° considerare su di esso una massa $m_1=11kg$ collegata tramite un filo ed una carrucola priva di attrito, ad un'altra massa m_2 lasciata libera verticalmente. Determinare il valore della massa m_2 affinché il sistema sia in equilibrio.

Soluzione



L'equazione che determina il moto del sistema è:

$$F = ma$$

Poiché il sistema deve essere in equilibrio deve essere F = 0

La forza di trascinamento m_2 deve fare da equilibrio sulla forza impressa da m_1 . Su m_1 agiscono due forze:

- la forza di trascinamento $F_{//1}$
- la forza di attrito $F_a = \mu F_{\perp 1}$

$$F_{//1} = F_{p1} \sin(35) = 61.8N$$

$$F_a = \mu F_{\perp 1} = \mu F_{p1} \cos(35) = 35.2N$$

Poiché $F_{\parallel 1} > F_a$ il corpo m_1 esercita una forza trainante nel verso ascendente del piano inclinato.

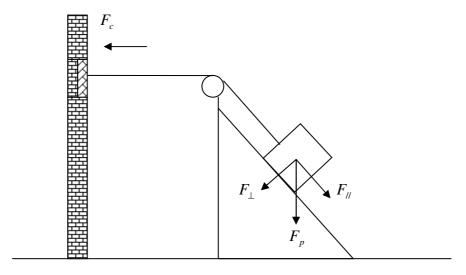
Possiamo scrivere allora

$$(F_{//1} - F_a) - F_{p2} = 0$$

26,6 = 9,8 $m_2 \rightarrow m_2 = 2,71kg$

Sia dato un piano inclinato di 60° avente coefficiente di attrito $\mu=0.12$ su cui poggia una massa m. Determinare il minimo valore della massa affinché riesca a staccare un mattone da un muro vincolato ad esso da una forza di coesione $F_c=160N$.

Soluzione



L'equazione che descrive il moto del corpo è la seconda legge della dinamica

$$F = ma$$

$$(F_{\parallel} - F_{c}) - \mu F_{\perp} = ma$$

Osservazione

Affinché vi sia movimento:

- consider le forze attive $F_{\parallel} F_{c}$
- considero le forze passive μF_{\perp}
- se le forze attive sono superiori alle forze passive, cioè $|F_{//} F_c| > \mu F_{\perp}$ vi è movimento;
- se le forze attive sono inferiori alle forze passive, cioè $|F_{\parallel} F_c| < \mu F_{\perp}$ non vi è movimento cioè la le forze che generano movimento non sono in grado di vincere l'attrito, quindi il corpo rimane fermo.

In questo caso la forza attiva è $F_{//}$ deve vincere al forza di coesione F_c tenendo conto che deve anche contrastare la forza di attrito μF_{\perp} , quindi:

$$F_{//} = F_p \sin(60) = 8.5 mN$$

$$F_a = \mu F_{\perp} = \mu F_p \cos(60) = 0.6 mN$$

Per staccare il mattone dal muro la forza F_{\parallel} deve equilibrare l'azione della forza di coesione F_c tenendo conto anche della resistenza dovuta alla forza di attrito μF_{\perp} , la condizione minima affinché questo avvenga è che:

$$F_{//} = F_c + \mu F_{\perp}$$

Che ricordando l'equazione

$$(F_{//} - F_c) - \mu F_{\perp} = ma$$

corrisponde ad a=0, che è la condizione minima affinché la massa riesca a staccare il mattone da muro, per valori a>0, il mattone viene comunque tolto. Quindi:

$$8,5m-160-0,6m = 0$$

$$8,5m-160-0,6m = 0$$

$$7,9m = 160$$

$$m = \frac{160}{7,9} = 20,26kg$$