
DEGREE OF PARABOLIC QUANTUM GROUPS

RICCARDO PULCINI

Abstract. We study some elementary properties of the quantum enveloping
algebra associated to a parabolic subalgebra p of a semisimple Lie algebra g.
In particular we prove an explicit formula for the degree of this algebra, that
extends the well known formula for the quantum enveloping algebra associated
to g and b, where b is a Borel subalgebra of g.

1. Introduction and overview

The aim of this work is to calculate the degree of some quantum universal en-
veloping algebras. Let g be a semisimple Lie algebra, fix a Cartan subalgebra h ⊂ g
and a Borel subalgebra h ⊂ b ⊂ g, and denote with Π the correspondent set of
simple roots. Given Π′ ⊂ Π, we associate to Π′ the parabolic subalgebra p ⊃ b.
In this situation we can "quantized" our algebras, we obtain Hopf algebras over
C

[
q, q−1

]
, namely Uq(b) ⊂ Uq(p) ⊂ Uq(g).

When we specialize the parameter q to a primitive lth root ε of 1 (with some
restrictions on l), the resulting algebras are finite modules over their centers, and
they are a finitely generated C algebra. In particular, every irreducible representa-
tions has finite dimension. Let us denote by V the set of irreducible representations,
Schur lemma gives us a surjective application

π : V → Spec(Z).

To determine the pull back of a point in Spec(Z) is a very difficults problem. But
generically the problem becomes easier. Since our algebras are domains, there
exists a non empty Zariski open set V ⊂ Spec(Z), such that π|π−1(V ) is bijective
and moreover every irreducible representation in π−1(V ) has the same dimension
d, the degree of our algebra. The problem is to identify d.

Note that, a natural candidate for d exists. We will see that in the case of Uε(p),
we can find a natural subalgebra Z0 ⊂ Z, which is a Hopf subalgebra of Uε(p).
Therefore it is the coordinate ring of an algebraic group H. The deformation
structure of Uε(p) implies that H has a Poisson structure. Let δ be the maximal
dimension of the symplectic leaves, then a natural conjecture is d = l

δ
2 . This is well

know in several cases, for example, p = g and p = b (cf [DCK90] and [KW76]).
Our purpose has been to prove one explicit formula for δ. Before describing

the strategy of the proof, we explain the formula for δ. Set l the Levi factor of
p. Let W be the Weyl group of the root system of g, and W l ⊂ W that one of
subsystem generated by Π′. Denote by w0 the longest element of W and wl

0 the
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longest element of W l. Recall that W acts on h and set s as the rank of the linear
transformation w0 − wl

0 of h. Then

δ = l(w0) + l(wl
0) + s,

where l is the length function with respect to the simple reflection. We describe now
the strategy of the proof. Our instrument is the theory of quasi polynomial algebras.
By a result of De Concini, Kaç and Procesi ([DCKP92] and [DCKP95]), we know
that in order to compute the degree of such algebras we can be reduced to the
computation of the rank of a skew symmetric matrix. To use this result we construct
a degeneration of our quantum algebras to a quasipolynomial algebra, U t

ε , and a
family, U t,χ

ε , of finitely generated algebras parameterized by (t, χ) ∈ C× Spec(Z0).
Then we prove that U0

ε is a quasi polynomial algebra so that the theorem of De
Concini, Kaç and Procesi ([DCKP95]) can be applied but we notice that this give
us only a lower bound for the value of d. To get the equality we use the family U t,χ

ε .
The rigidity of the semisimple algebras gives us U1,χ

ε
∼= U0,χ

ε and the theory of the
algebras with trace ([DCP93]) it tells us that the degree of our quantum algebra
and U1,χ

ε are equal, and that the same is true for the quasipolynomial algebra U0
ε

and U0,χ
ε , then this give the desired deduction. We close this introduction with the

description of the section that compose this article. In the first section we introduce
the main object of this work the quantum universal enveloping algebra associated
to a parabolic Lie algebra and we give some elementary properties for this algebras.
The next two sections are dedicated to the proof of the formula for the degree, in
particular in section 3 we describe the main tool of this work, the degeneration of
our quantum algebra to a quasi polynomial algebra. The last section is devoted to
the study of the center of the deformation, note that the actual determination of
the center of the algebra Uε(p) remains in general an open and potentially tricky
problem. However we will propose a method, inspired by work of Premet and
Skryabin ([PS99]), to “lift” elements of the center of the degenerate algebra at t = 0
to elements of the center at least over an open set of Spec Z0, and we prove that
the center is deformation invariant.

2. Quantum enveloping algebras

We begin by recalling some classical facts about quantum enveloping algebras
associated to a simple Lie algebra g, and we introduce the main object of this work,
the quantum enveloping algebra associated to a parabolic subalgebra p ⊂ g.

Choose a Cartan subalgebra h ⊂ g and a Borel subalgebra b ⊂ g. Let R ⊃ R+ ⊃
Π = {α1, . . . , αn} be the root system, set of positive root and set of simple root.
As usual we call W the Weyl group associated to h and b and we set w0 as the
longest element of W. Denote by P and Q the its weight and root lattices and let
w1, . . . , wn be the fundamental weight.

Fix Π′ ⊂ Π, we call p the parabolic subalgebra associated to it. Note that if
Π′ = ∅ then p = b and if Π′ = Π then p = g. Let p = l⊕u be the Levi decomposition
of p, with l the Levi factor and u the unipotent part. We call W l ⊂ W the Weyl
group of l and wl

0 its longest element, and we have Π′ = Πl.

2.1. The simple case. Following De Concini and Kac ([DCK90]), we define:

Definition 1. A simply connected quantum group Uq(g) associated to the Car-
tan matrix C = (ci,j)i,j=1,...,n is an algebra over C (q) on generators Ei, Fi (i =
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1, · · · , n), Kα α ∈ P , subject to the following relations

{
KαKβ = Kα+β

K0 = 1(2.1) {
KαEiK−α = q(α|αi)Ei

KαFiK−α = q−(α|αi)Fi
(2.2)

[Ei, Fj ] = δij
Kαi −K−αi

qdi − q−di
(2.3) 

1−aij∑
s=0

(−1)s

[
1− aij

s

]
di

E
1−aij−s
i EjE

s
i = 0 if i 6= j

1−aij∑
s=0

(−1)s

[
1− aij

s

]
di

F
1−aij−s
i FjF

s
i = 0 if i 6= j

(2.4)

where
[

n
m

]
di

is the q binomial coefficient defined by:

[
n
m

]
d

=
[n]d!

[k]d![n− k]d!

and

[n]d =
qn − q−n

qd − q−d
.

It is well known, by the work of Lusztig ([Lus93]), that

Theorem 1. Uq(g) has a Hopf algebra structure with comultiplication ∆, antipode
S and counit η defined by:

•

 ∆(Ei) = Ei ⊗ 1 + Kαi
⊗ Ei

∆(Fi) = Fi ⊗K−αi + 1⊗ Fi

∆(Kα) = Kα ⊗Kα

•

 S(Ei) = −KαiEi

S(Fi) = −FiKαi

S(Kα) = K−α

•

 η(Ei) = 0
η(Fi) = 0
η(Kα) = 1

We denote by U+, U− and U0 the C(q)-subalgebra generated by the Ei, the Fi

and Kβ respectively. The algebras U+ and U− are not Hopf subalgebras. On the
other hand, the algebras U≥0 := U+U0 and U≤0 := U0U− are Hopf subalgebras
and we shall think to them as quantum deformation of the enveloping algebras U(b)
and U(b−). We denote them Uq(b) and Uq(b−).

Following Lusztig ([Lus93]), we define an action of the braid group BW (associ-
ated to W). Denote by Ti and si the canonical generators of BW and W, we define
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the action as an automorphism of Uq(g), by the formulas:

TiKλ = Ksi(λ)(2.5)
TiEi = −FiKi(2.6)
TiFi = −K−1

i Ei(2.7)

TiEj =
−cij∑
s=0

(−1)s−cij q−sdi
E
−cij−s
i

[−cij − s]di !
Ej

Es
i

[s]di !
(2.8)

TiFj =
−cij∑
s=0

(−1)s−cij qsdi
F s

i

[s]di
!
Fj

F
−cij−s
i

[−cij − s]di
!
.(2.9)

We use the braid group to construct analogues of the root vectors associated to
non simple roots.

Take a reduced expression w0 = si1 . . . siN
for the longest element in the Weyl

group W. Setting βj = si1 · · · sij−1(αj), we get a total order on the set of positive
root. We define the elements Eβj = Ti1 . . . Tij−1(Eij ) and Fβj = Ti1 . . . Tij−1(Fij ).
Note that this elements depend on the choice of the reduced expression.

Lemma 1. (i) Eβj ∈ U+, ∀ i = 1 . . . N and the monomials Ek1
β1
· · ·EkN

βN
form

a C(q) basis of U+

(ii) Fβj
∈ U−, ∀ i = 1 . . . N and the monomials F k1

β1
· · ·F kN

βN
form a C(q) basis

of U−

Theorem 2 (Poincaré-Birkoff-Witt theorem). The monomials

Ek1
β1
· · ·EkN

βN
KαF kN

βN
· · ·F k1

β1

are a C(q) basis of U . In fact as vector spaces, we have the tensor product decom-
position,

U = U+ ⊗ U0 ⊗ U−

Proof. See [Lus93]. �

Theorem 3 (Levendorskii-Soibelman relations). For i < j one has
(i)

(2.10) Eβj
Eβi

− q(βi|βj)Eβi
Eβj

=
∑

k∈ZN
+

ckEk

where ck ∈ C[q, q−1] and ck 6= 0 only when k = (k1, . . . , kN ) is such that
ks = 0 for s ≤ i and s ≥ j, and Ek = Ek1

β1
· · ·EkN

βN
.

(ii)

(2.11) Fβj
Fβi

− q−(βi|βj)Fβi
Fβj

=
∑

k∈ZN
+

ckF k

where ck ∈ C[q, q−1] and ck 6= 0 only when k = (k1, · · · , kN ) is such that
ks = 0 for s ≤ i and s ≥ j, and F k = F kN

βN
· · ·F k1

β1
.

Proof. See [LS91]. �

To obtain from Uq(g) a well defined Hopf algebra by specializing q to an arbitrary
non zero complex number ε, one can construct an integral form of U .
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Definition 2. An integral form UA is a A subalgebra, where A = C[q, q−1], such
that the natural map

UA ⊗A C(q) 7→ U

is an isomorphism of C(q) algebra. We define

Uε = UA ⊗A C

using the homomorphism A 7→ C mapping q to ε.

There are two different candidates for UA the non restricted and the restricted
integral form, which lead to different specializations (with markedly different rep-
resentation theories) for certain values of ε. We are interested in the non restricted
form, for more details one can see [CP95].

Introduce the elements

[Ki;m]qi
=

Kiq
m
i −K−1

i q−m
i

qi − q−1
i

∈ U0

with m ≥ 0, where qi = qdi .

Definition 3. The algebra UA is the A subalgebra of U generated by the elements
Ei, Fi, K±1

i and Li = [Ki; 0]qi
, for i = 1, . . . , n. With the map ∆, S and η defined

on the first set of generators as in 1 and with

∆(Li) = Li ⊗Ki + K−1
i ⊗ Li (2.12a)

S(Li) = −Li (2.12b)
η(Li) = 0 (2.12c)

The defining relation of UA are as in 1 replacing 2.3 by

EiFj − FjEi = δijLi

and adding the relation

(qi − q−1
i )Li = Ki −K−1

i

Proposition 1. UA with the previous definition is a Hopf algebra. Moreover, UA
is an integral form of U .

Proof. See [CP95] or [DCP93] §12. �

Proposition 2. If ε2di 6= 1 for all i, then

(i) Uε is generated over C by the elements Ei, Fi, and K±1
i with defining

relations obtained from those in 1 by replacing q by ε
(ii) The monomials

Ek1
β1
· · ·EkN

βN
KαF kN

βN
· · ·F k1

β1

form a C basis of Uε.
(iii) The LS relations holds in Uε.

Proof. See [DCP93] §12. �
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2.2. Parabolic case. Choose a reduced expression of w0 = sj1 . . . sjk
si1 . . . sih

,
such that wl

0 = si1 . . . sih
is a reduced expression for wl

0. Set w = w0(wl
0)
−1 =

sj1 . . . sjk
, with h = |(Rl)+| and h + k = N = |R+|. Define, as in the general case,

β1
t = wsi1 . . . sit−1 (αit) ∈ (Rl)+,

β2
t = sj1 . . . sjt−1

(
αit+k

)
∈ R+ \ (Rl)+.

Given this choice of positive root, we obtain the following q analogues of the root
vectors:

Eβ1
t

= TwTi1 . . . Tit−1 (Eit
) ,

Eβ2
t

= Tj1 . . . Tjt−1

(
Eit+k

)
.

and

Fβ1
t

= TwTi1 . . . Tit−1 (Fit
) ,

Fβ2
t

= Tj1 . . . Tjt−1

(
Fit+k

)
.

The PBW theorem implies that the monomials

(2.13) Es1
β2
1
· · ·Esk

β2
k
E

sk+1

β1
1

· · ·Esk+h

β1
h

KλF
tk+h

β1
h

· · ·F tk+1

β1
1

F tk

β2
k
· · ·F t1

β2
1

for (s1, · · · , sN ), (t1, . . . , tN ) ∈ (Z+)N and λ ∈ Λ, form a C(q)-basis of Uq(g).
The choice of the reduced expression of w0 and the LS relations for Uq(g) implies

that

Proposition 3. For i < j one has
(i)

Eβ1
j
Eβ1

i
− q(β1

i |β
1
j )Eβ1

i
Eβ1

j
=

∑
k∈ZN

+

ckEk
1

where ck ∈ C(q) and ck 6= 0 only when k = (s1, . . . , sk) is such that sr = 0
for r ≤ i and r ≥ j, and Ek

1 = Es1
β1
1
. . . Esk

β1
k
.

(ii)
Eβ2

j
Eβ2

i
− q−(β2

i |β
2
j )Eβ2

i
Eβ2

j
=

∑
k∈ZN

+

ckEk
2

where ck ∈ C(q) and ck 6= 0 only when k = (t1, . . . , th) is such that tr = 0
for r ≤ i and r ≥ j, and Ek

2 = Et1
β2
1
. . . Eth

β2
h
.

The same statement holds for Fβ1
i

and Fβ2
i
.

Let Πl be the simple root associated to the Levi factor l. The definition of the
braid group action implies:

Proposition 4. (i) If i ∈ Πl, then Ei = Eβ1
s

and Fi = Fβ1
s
, for some s ∈

{1, . . . , h}.
(ii) If i ∈ Π \Πl, then Ei = Eβ2

s
and Fi = Fβ2

s
for some s ∈ {1, . . . , k}.

Definition 4. The simple connected quantum group associated to p, or parabolic
quantum group, is the C(q) subalgebra of Uq(g) generated by

Uq(p) = 〈Eβ1
i
,Kλ, Fβj

〉

for i = 1, . . . , h, j = 1 . . . N and λ ∈ Λ.
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Definition 5. (1) The quantum Levi factor of Uq(p) is the subalgebra generated
by

Uq(l) = 〈Eβ1
i
,Kλ, Fβ1

i
〉

for i = 1, . . . , h, and λ ∈ Λ.
(2) The quantum unipotent part of U(p) is the subalgebra generated by

Uw = 〈Fβ2
s
〉

with s = 1 . . . h

Set U+
q (p) = U+

q (l) = 〈Ei〉i∈Πl , U−q (p) = 〈Fi〉i∈Π, U−q (l) = 〈Fi〉i∈Πl and U0
q (p) =

U0
q (l) = 〈Kλ〉λ∈Λ. We have:

Proposition 5. The definition of Uq(p) and Uq(l) is independent of the choice of
the reduced expression of wl

0 and w0.

Proof. Follows immediately from proposition 9.3 in [DCP93]. �

We can easely see taht the PBW theorem and the LS relations holds in Uq(p)
and Uq(l), which is an immediately consequence of 2.13.

Proposition 6. Set m = rank l = #|Πl|. The algebra U(p) is generated by Ei, Fj

Kλ, with i = 1, . . . ,m, j = 1, . . . , n and λ ∈ Λ, subject to the following relations:{
KαKβ = Kα+β

K0 = 1(2.14) {
KαEiK−α = q(α|αi)Ei

KαFjK−α = q−(α|αj)Fj
(2.15)

[Ei, Fj ] = δij
Kαi −K−αi

qdi − q−di
(2.16) 

1−aij∑
s=0

(−1)s

[
1− aij

s

]
di

E
1−aij−s
i EjE

s
i = 0 if i 6= j

1−aij∑
s=0

(−1)s

[
1− aij

s

]
di

F
1−aij−s
i FjF

s
i = 0 if i 6= j.

(2.17)

Where
[

n
m

]
di

is the q binomial coefficient.

Proof. Follows from PBW theorem and the LS relations. �

We state now some easy properties of Uq(p):

Lemma 2. (i) The multiplication map

U+(l)⊗ U0(l)⊗ U−(l) → U(l)

is an isomorphism of vector spaces.
(ii) The multiplication map

U(l)⊗ Uw m−→ U(p)

defined by m(x, u) = xu for every x ∈ U(l) and u ∈ Uw, is an isomorphism
of vector spaces.
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(iii) The map µ : U(p) → U(l) defined by

µ
(
Es1

β1
1
· · ·Esh

β1
h
KλF

tk+h

β1
h

· · ·F tk+1

β1
1

F tk

β2
k
· · ·F t1

β2
1

)
=

{
0 if tk+i 6= 0 for some i = 1, . . . , h,

Es1
β1
1
· · ·Esh

β1
h
KλF

tk+h

β1
h

· · ·F tk+1

β2
1

if tk+i = 0 for all i = 1, . . . , h,

is an homomorphism of algebras.
(iv) U(p) and U(l) are Hopf subalgebras of U .

Proof. Follows immediately from the definition. �

Let A = C[q, q−1], and UA the integral form of Uq(g) defined in definition 3. Like
in the general case, we define UA(p), has the subalgebra generated by Eβ1

i
, Fβ1

i
,

Fβ2
s
, K±1

j and Lj , with i = 1, . . . , h, s = 1, . . . , k and j = 1, . . . , n.

Definition 6. Let ε ∈ C, we define

Uε(p) = UA(p)⊗A C

using the homomorphism A → C mapping q → ε

Let ε ∈ C such that ε2di 6= 1 for all i, then

Proposition 7. Uε(p) ⊂ Uε(g). Moreover Uε(p) is generated by Eβ1
i
, Fβs

and K±1
j ,

for i = 1, . . . , h, s = 1, . . . , N and j = 1, . . . , n.

Proof. The claim is a consequence of the definition of UA(p). �

Proposition 8. The PBW theorem and the LS relations holds for Uε(p)

Proof. The claim is a consequence of the PBW theorem and LS relations for Uε(g)
and the choice of the decomposition of the reduced expression of w0. �

2.3. Some observations on the center of Uε(p). The aim of this section is to
extend some properties of the center of Uε at the center of Uε(p).

Proposition 9. For i = 1, . . . , k, s = 1, . . . , h and j = 1, . . . , n, El
β1

i
, F l

β1
i
, F l

β2
s

and

K±l
j lie in the center of Uε(p)

Proof. It is well known that these elements lie in the center of Uε (cf. [DCP93]),
but they also lie in Uε(p), hence the claim. �

For α ∈ (Rl)+, β ∈ R+ and λ ∈ Q, define eα = El
α, fβ = F l

β , k±1
λ = K±l

λ . Let
Z0(p) be the subalgebra generated by the eα, fβ and k±1

i .

Proposition 10. Let Z0
0 , Z+

0 and Z−0 be the subalgebra generated by k±1
i , eα and

fβ respectively.
(i) Z±0 ⊂ U±ε (p)
(ii) Multiplication defines an isomorphism of algebras

Z−0 ⊗ Z0
0 ⊗ Z+

0 → Z0(p)

(iii) Z0
0 is the algebra of Laurent polynomial in the ki, and Z+

0 and Z−0 are
polynomial algebra with generators eα and fβ respectively.



DEGREE OF PARABOLIC QUANTUM GROUPS 9

(iv) Uε(p) is a free Z0
ε (p) module with basis the set of monomial

Es1
β1
1
· · ·Esh

β1
h
Kr1

1 · · ·Krn
n F

tk+h

β1
h

· · ·F tk+1

β1
1

F tk

β2
k
· · ·F t1

β2
1

for which 0 ≤ sj , ti, rv < l

Proof. By definition of U+(p), we have eα ∈ U+(p), since U+(p) is a subalgebra (i)
follows. (ii) and (iii) are easy corollaries of the definitions and of the PBW theorem.
(iv) follows from the PBW theorem for U(p). �

The previous proposition shows that Uε(p) is a finite Z0(p) module. Since Z0

is clearly Noetherian, from (iii), it follows that Zε(p) ⊂ Uε(p) is a finite Z0(p)
module, and hence integral over Z0(p). By the Hilbert basis theorem Zε(p) is a
finitely generated algebra. Thus the affine schemes Spec(Zε(p)) and Spec(Z0(p))
are algebraic varieties. Note that Spec(Z0) is isomorphic to CN × Cl(h) × (C∗)n.
Moreover the inclusion Z0(p) ↪→ Zε(p) induces a projection τ : Spec(Zε(p)) →
Spec(Z0(p)), and we have

Proposition 11. Spec(Zε(p)) is an affine variety and τ is a finite surjective map.

Proof. Follows from the Cohen-Seidenberg theorem ([Ser65] ch. III). �

We conclude this section by discussing the relation between the center and the
Hopf algebra structure of Uε(p).

Proposition 12. (i) Z0(p) is a Hopf subalgebra of Uε(p).
(ii) Z0(p) is a Hopf subalgebra of Z0.
(iii) Z0(p) = Z0 ∩ Uε(p).

Proof. It follows directly from the given definitions. �

The fact that Z0(p) is an Hopf algebra tells us that Spec(Z0(p)) is an algebraic
group . Moreover, the inclusion Z0(p) ↪→ Z0 being an inclusion of Hopf algebras,
induces a group homomorphism,

Spec(Z0) → Spec(Z0(p)).

Let us recall that in [DCKP92] the authors prove that the center Z0 has the following
form:

Spec(Z0) =
{
(a, b) :∈ B− ×B+ : π−(a)π+(b) = 1

}
where if we denote by G the connected simply connected Lie group associated to
g, then B± are the borel subgroups of G associated to b±, H is the toral subgroup
associated to h and π± : B± → H is the canonical map. From this and, the explicit
description of the subalgebra Z0(p) ⊂ Z0, we get

Spec(Z0(p)) =
{
(a, b) :∈ B−

L ×B+ : π−(a)π+(b) = 1
}

where L ⊂ G is the connected subgroup of G such that Lie(L) = l, and B−
L =

B− ∩ L.
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3. Degeneration to a quasi polynomial algebra

3.1. The case p = g.

Definition 7. Let t ∈ C, we define U t
ε the algebra over C on generators Ei, Fi, Li

and K±
i , for i = 1, . . . , n, subject to the following relations:{

K±1
i K±1

j = K±1
j K±1

i

KiK
−1
i = 1

(3.1) {
Ki (Ej) K−1

i = εaij Ej

Ki (Fj) K−1
i = ε−aij Fj

(3.2) 
[Ei, Fi] = tδijLi(
adσ−αi

Ei

)1−aij
Ej = 0(

adσ−αi
Fi

)1−aij
Fj = 0

(3.3)


(
εdi − ε−di

)
Li = t

(
Ki −K−1

i

)
[Li, Ej ] = t εaij−1

εdi−ε−di

(
EjKi + K−1

i Ej

)
[Li, Fj ] = t ε−aij−1

εdi−ε−di

(
FjKi + K−1

i Fj

)(3.4)

Let 0 6= λ ∈ C, define

(3.5) ϑλ(Ei) =
1
λ

Ei, ϑλ(Fi) =
1
λ

Fi, ϑλ(Li) =
1
λ

Li, ϑλ(K±1
i ) = K±1

i ,

for i = 1, . . . , n.

Proposition 13. For any 0 6= λ ∈ C, ϑλ is an isomorphism of algebra between U t
ε

and Uλt
ε . In particular if t 6= 0 then U t

ε
∼= Uε(g).

Proof. Simple verification of the properties. �

Set Sε := U t=0
ε , we want to construct an explicit realization of it. Let D =

Uε(b+)⊗ Uε(b−) and define the map

Σ : Sε → D
by Σ(Ei) = Ei := Ei ⊗ 1, Σ(Fi) = Fi = 1⊗ Fi, and Σ(K±1

i ) = K±1
i := K±1

i ⊗K±1
i

for i = 1, . . . , n.

Lemma 3. Σ is a well defined map.

Proof. We must verify that the image of Ei, Fi and Ki satisfy the relation 3.1 for
t = 0. This is a simple matter of bookkeeping. �

Note that Σ is injective, then we can identify Sε with the subalgebra of D gen-
erated by Ei, Fi and Ki, for i = 1, . . . , n. We define now the analogues of the root
vectors for Sε:

Definition 8. For all i = 1, . . . , N , let
(i) Eβi

:= Eβi
⊗ 1 ∈ Sε

(ii) Fβi
:= 1⊗ Fβi

∈ Sε

As a consequence of this we get a PBW theorem for Sε.

Proposition 14. The monomials

Ek1
β1

. . . EkN

βN
Ks1

1 . . .Ksn
n Fh1

βN
. . .Fk1

β1
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for (k1, . . . , kN ), (h1, . . . , hN ) ∈ (Z+)N and (s1, . . . , sn) ∈ Zn, form a C basis of
Sε. Moreover

Sε = S−ε ⊗ S0
ε ⊗ S+

ε

where S+
ε (resp. S−ε and S0

ε ) is the subalgebra generated by Eβi
(resp. Fβi

and Ki).

Proof. This follows from the injectivity of Σ and PBW theorem for Uε(g) �

It is clear that Eβi
is also the image of the element Eβi

∈ U t
ε , where the Eβi

are non commutative polynomials in the Ei’s by Lusztig procedure ([Lus93]). The
same thing is true for Fβi and Fβi .

It is also clear that the LS relations hold for Eβi
and the Fβi

(instead of the Eβi

and the Fβi
) inside Sε.

Theorem 4. Sε = U t=0
ε is a twisted derivation algebra.

Proof. Define U0 = C[Eβ1 ,FβN
] ⊂ Sε, then we can define

U i = U i−1
σ,D

[
Eβi

,FβN−i

]
⊂ Sε

where σ and D are given by the L.S. relation. Note now that, the Ki, for i = 1, . . . , n
normalize UN , and when we add them to this algebra we perform an iterated
construction of twisted Laurent polynomial. The resulting algebra will be called T .
We now claim

Sε = T

Note that, by construction T ⊂ Sε, so we only have to prove that Sε ⊂ T . Now
note that

Ek1
β1
· · · EkN

βN
Ks1

1 · · · Ksn
n FhN

βN
· · · Fh1

β1
∈ T

for every (k1, . . . , kN ), (h1, . . . , hN ) ∈ (Z+)N and (s1, . . . , sn) ∈ Zn. Then by
proposition 14 we have Sε ⊂ T . �

We finish this section with some remarks on the center of U t
ε . Recall that U t

ε is
isomorphic to Uε for every t ∈ C∗, hence Zt

ε is isomorphic to Z1
ε = Zε. For t = 0,

we define C0 the subalgebra of Sε generated by E l
β , F l

β for β ∈ R+ and K±l
j for

j = 1, . . . , n and let Cε be the center of Sε. Let Z0[t] the trivial deformation of Z0

Lemma 4. (i) ρ : Z0[t] → U t
ε defined in the obvious way is an injective homo-

morphism of algebra.
(ii) U t

ε is a free Z0[t] module with base the set of monomials

Ek1
β1
· · ·EkN

βN
Ks1

1 · · ·Ksn
n FhN

βN
· · ·Fh1

β1

for which 0 ≤ ki, sj , hi < l, for i = 1, . . . , N and j = 1, . . . , n.

Proof. (i) follows by definitions of Z0[t]. (ii) follows from the PBW theorem. �

Lemma 5. (i) Z0
∼= C0.

(ii) Uε and Sε are isomorphic has Z0 modules.

Proof. Follows from the definitions. �
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3.2. General case. We can now study the general case.

Definition 9. Let U t
ε (p) be the subalgebra of U t

ε generated by Eβ1
i
, Fβj

and K±1
s

for i = 1, . . . , h, j = 1, . . . , N and s = 1, . . . , n.

Set Sε(p) = U t=0
ε (p) ⊂ Sε.

Proposition 15. (i) For every t ∈ C, U t
ε (p) is a Hopf subalgebra of U t

ε .
(ii) For any λ 6= 0, ϑλ defines by 3.5 is an algebra isomorphism between U t

ε (p)
and Uλt

ε (p).

Proof. This is an immediate consequence of the same properties in the case p =
g. �

We can now state the main theorem of this section

Theorem 5. Sε(p) is a twisted derivation algebra

Proof. We use the same technique as we used in the proof of theorem 4. Let
D(p) = Uε(bl

+)⊗ Uε(b−). Define

Σ : Sε(p) → D(p)

by Σ(Ei) = Ei, Σ(Fj) = Fj , Σ(K±1
j ) = K±1

j for i ∈ Πl and j = 1, . . . , n.

Lemma 6. Sε(p) is a subalgebra of Sε

Proof. Note that D(p) is a subalgebra of D, and, as in lemma 3, the map Σ is well
defined and injective. So, we have the following commutative diagram

Sε(p) D(p)

Sε D

//Σ

��
� �
� �
� �
� �

i

��
� �
� �
� �
� �

j

//Σ

Since Σ and j are injective maps, we have that i is also injective �

So we can identify Sε(p) with the subalgebra of Sε generated by Eβ1
i
, Fβs

and
K±1

j for i = 1, . . . , h, s = 1, . . . , N and j = 1, . . . , n. As a corollary of proposition
14 and LS relations, we have:

Proposition 16. (i) The monomials

Ek1
β1
1

. . . Ekh

β1
h
Ks1

1 . . .Ksn
n F t1

βN
. . .F t1

β1

for (k1, . . . , kh) ∈ (Z+)h, (t1, . . . , tN ) ∈ (Z+)N and (s1, . . . , sn) ∈ Zn, form
a C basis of Sε(p).

(ii) For i < j one has
(a)

(3.6) Eβ1
j
Eβ1

i
− ε(β

1
i |β

1
j )Eβ1

i
Eβ1

j
=

∑
k∈ZN

+

ckEk

where ck ∈ C and ck 6= 0 only when k = (k1, . . . , kh) is such that
ks = 0 for s ≤ i and s ≥ j, and Ek = Ek1

β1
1

. . . Ekh

β1
h
.
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(b)

(3.7) FβjFβi − ε−(βi|βj)FβiFβj =
∑

k∈ZN
+

ckFk

where ck ∈ C and ck 6= 0 only when k = (k1, . . . , kN ) is such that
ks = 0 for s ≤ i and s ≥ j, and Fk = FkN

βN
. . .Fk1

β1
.

So we have:

Theorem 6. The monomials

Ek1
β1
1

. . . Ekh

β1
h
Ks1

1 . . .Ksn
n F tN

βN
. . .F t1

β1

for (k1, . . . , kh) ∈ (Z+)h, (t1, . . . , tN ) ∈ (Z+)N and (s1, . . . , sn) ∈ Zn, are a C[t]
basis of U t

ε . In particular t is not a zero divisor in U t
ε hence U t

ε is a flat over C[t]

As we see in general case, we can conclude that Sε(p) is a quasi polynomial
algebra. �

4. The degree

4.1. The degree of Sε(p). Using the method exposed in [DCP93] we can now
start the calculation of the degree of Uε(p).

Theorem 7. If l is a good integer, then

degSε(p) = l
1
2 (l(w0)+l(wl

0)+rank(w0−wl
0))

Proof. Denote by Sε(p) the quasi polynomial algebra associated to Sε(p). We know
by the general theory that

degSε(p) = degSε(p).

Let xi denote the class of Eβ1
i

in Sε(p) for i = 1, . . . , h and yj the class of Fβj
for

j = 1, . . . , N , then from theorem 5 we have

xixj = ε(β
1
i |β

1
j )xjxi,(4.1)

yiyj = ε−(βi|βj)yjyi.(4.2)

if i < j. Thus we introduce the skew symmetric matrices A = (aij) with aij =
(βi|βj) for i < j and Al =

(
a′ij

)
with a′ij = (β1

i |β1
j ) for i < j.

Let ki be the class of Ki, using the relation in theorem 5 we obtain a n × N
matrix B = ((wi|βj)) and a h×N matrix Bl = ((wi|β1

j )).
Let t = 2 unless the Cartan matrix is of type G2, in which case t = 6. Since we

will eventually reduce modulo l an odd integer coprime with t, we start inverting
t. Thus consider the free Z

[
1
t

]
module V + with basis u1, . . . , uh, V − with basis

u′1, . . . , u
′
N and V 0 with basis w1, . . . , wn. On V = V + ⊕ V 0 ⊕ V − consider the

bilinear form given by

T =

 Al −tBl 0
Bl 0 −B
0 tB −A

 ,

then the rank of T is the degree of Sε(p).
Consider the operators M l =

(
Al −tBl 0

)
, M =

(
0 tB −A

)
, and

N =
(

Bl 0 −B
)
, so that T = M l ⊕N ⊕M .
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Note that
B(u′i) = βi

and
Bl(ui) = β1

i

Now we need some technical lemma:

Lemma 7. Let w ∈ W and fix a reduced expression w = si1 · · · sik
. Given ω =∑n

i=1 δiwi, with δi = 0 or 1. Set

Iω(w) := {t ∈ {1, . . . , k} : sit
(ω) 6= ω} .

Then
ω − w(ω) =

∑
t∈Iω

βt

Proof. We proceed by induction on the length of w. The hypothesis made implies
si(ω) = ω or si(ω) = ω − αi. Write w = w′sik

. If k /∈ Iω, then w(ω) = w′(ω) and
we are done by induction. Otherwise

w(ω) = w′(ω − αik
) = w′(ω)− βk

and again we are done by induction. �

Lemma 8. Let θ =
∑n

i=1 aiαi the highest root of the root system R. Let Z′′ =
Z[a−1

1 , . . . , a−1
n ], and let Λ′′ = Λ⊗Z Z′′ and Q′′ = Q⊗Z Z′′. Then the Z′′ submodule

(1− w0)Λ′′ of Q′′ is a direct summand.

Proof. See [DCKP95] or [DCP93] §10. �

Lemma 9. (i) The operator M is surjective
(ii) The vector vω :=

(∑
t∈Iω

ut

)
−ω−w0(ω), as ω run thought the fundamental

weights, form a basis of the kernel of M .
(iii) N(vω) = ω − w0(ω) =

∑
t∈Iω

βt.

Proof. See [DCKP95] or [DCP93] §10. �

Set T1 = M l ⊕M , then using the notation of lemma 7, we have

Lemma 10. The vector vw =
∑

t∈Iw(wl
0)

ut − w − w0(w) +
∑

t∈Iw(w0)
u′t, as w

runs through the fundamental weights, form a basis of the kernel of T1.

Proof. First, we observe that T1 is onto, since M and M l are projections over V −

and V + respectively, by lemma 9. Since the n vectors vw are part of a basis and,
the kernel of T1 is a direct summand of rank n, by surjectivity. It is enough to show
that vw is in the kernel of T1. We have

T1(vw) = Al

 ∑
t∈Iw(wl

0)

ut

−t Bl (−w − w0(w))

+tB (−w − w0(w))−A

 ∑
t∈Iw(w0)

u′t


= M l (vw)−t Bl

(
wl

0(w)− w0(w)
)
−M(vw).

So from lemma 7 and lemma 9, we have:

T1(vw) = −tBl
(
wl

0(w)− w0(w)
)
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Let w0 = wl
0w, since w runs through the fundamental weights, we have two cases:

(1) w(w) = w, therefore wl
0(w)− w0(w) = 0 and T1(vw) = 0.

(2) w(w) 6= w, therefore wl
0(w) = w and wl

0(w) − w0(w) = w − w0(w) ∈
ker tBl, by definition of tBl, so T1(vw) = 0.

�

Since T is the direct sum of T1 and N , its kernel is the intersection of the 2
kernels of these operators. We have computed the kernel of T1 in lemma 10. Thus
the kernel of T equals the kernel of N restricted to the submodule spanned by the
vw.

Lemma 11.

N(vw) =
∑

t∈Iw(wl
0)

β1
t −

∑
t∈Iw(w0)

βt = w0(w)− wl
0(w).

Proof. Note that B(ut) = βt, then

N(vw) =
∑

t∈Iw(wl
0)

β1
t −

∑
t∈Iw(w0)

βt.(4.3)

Finally, the claim follows using lemma 7. �

Thus, we can identify N we the map w0 − wl
0 : Λ → Q. At this point we need

the following fact

Lemma 12. Let θ =
∑n

i=1 aiαi the highest root of the root system R. Let Z′ =
Z[a−1

1 , . . . , a−1
n ], and let Λ′ = Λ ⊗Z Z′ and Q′ = Q ⊗Z Z′. Then the Z′ submodule

(w0 − wl
0)Λ

′ of Q′ is a direct summand.

Proof. The claim follows as a consequence of lemma 8. �

So if l is a good integer, i.e. l is coprime with t and ai for all i, we have

rank T = l(w0) + l(wl
0) + n−

(
n− rank

(
w0 − wl

0

))
,

and so the theorem follows. �

4.2. The degree of Uε(p). We begin by observing that every irreducible Uε(p)
module V is finite dimensional. Indeed, let Z(V ) be the subalgebra of the algebra
of intertwining operators of V generated by the action of the elements in Zε(p).
Since Uε(p) is finitely generated as a Zε(p) module, V is finitely generated as Z(V )
module. If 0 6= f ∈ Z(V ), then f ·V = V , otherwise f ·V is a proper submodule V .
Hence, by Nakayama’s lemma, there exist an endomorphism g ∈ Z(V ) such that
1 − gf = 0, i.e. f is invertible. Thus Z(V ) is a field. It follows easily that Z(V )
consists of scalar operators. Thus V is a finite dimensional vector space.

Since Zε(p) acts by scalar operators on V , there exists an homomorphism χV :
Zε 7→ C, the central character of V, such that

z · v = χV (z)v

for all z ∈ Zε and v ∈ V . Note that isomorphic representations have the same
central character, so assigning to a Uε(p) module its central character gives a well
defined map

Ξ : Rap (Uε(p)) → Spec (Zε(p)) ,
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where Rap (Uε(p)) is the set of isomorphism classes of irreducible Uε(p) modules,
and Spec (Zε(p)) is the set of algebraic homomorphisms Zε(p) 7→ C.

To see that Ξ is surjective, let Iχ, for χ ∈ Spec (Zε(p)), be the ideal in Uε(p)
generated by

ker χ = {z − χ(z) · 1 : z ∈ Zε(p)} .

To construct V ∈ Ξ−1(χ) is the same as to construct an irreducible representation
of the algebra Uχ

ε (p) = Uε(p)/Iχ. Note that Uχ
ε (p) is finite dimensional and non

zero. Thus, we may take V , for example, to be any irreducible subrepresentation
of the regular representation of Uχ

ε (p).
Let χ ∈ Spec(Z0(p)), we define,

Uχ
ε (p) = Uε(p)/Jχ

where Jχ is the two sided ideal generated by

ker χ = {z − χ(z) · 1 : z ∈ Z0(p)}
As we have seen at the end of section 3.1, Z0(p)[t] ⊂ U t

ε (p), so for all t ∈ C and
χ ∈ Spec(Z0(p)), we can define U t,χ

ε (p) = U t
ε (p)/Jχ where Jχ is the two side ideal

generated by
ker χ = {z − χ(z) · 1 : z ∈ Z0(p)}

The PBW theorem for U t
ε (p) implies that

Proposition 17. The monomials

Es1
β1
1
· · ·Esh

β1
h
Kr1

1 · · ·Krn
n F

tk+h

β1
h

· · ·F tk+1

β1
1

F tk

β2
k
· · ·F t1

β2
1

for which 0 ≤ sj , ti, rv < l, form a C basis for U t,χ
ε (p)

Lemma 13. For every 0 6= λ ∈ C, U t,χ
ε (p) is isomorphic to Uλt,χ

ε (p).

Proof. Consider the isomorphism ϑλ from U t
ε (p) and Uλt

ε (p), defined by (3.5). Its
follows from the above definition that ϑλ(Jχ) = Jχ. Then ϑλ induce an isomor-
phism between U t,χ

ε and Uλt,χ
ε . �

Proposition 18. The Uε(p) algebras U t,χ
ε (p) form a continuous family parametrized

by Z = C× Spec(Z0(p)).

Proof. Let V denote the set of triple (t, χ, u) with (t, χ) ∈ Z and u ∈ U t,χ
ε (p). Then

from the PBW theorem we have that the set of monomial

Es1
β1
· · ·Esh

β1
h
Kr1

1 . . .Krn
n F tN

βN
· · ·F t1

β1

for which 0 ≤ si, ti, rv < l, for i ∈ Πl, j = 1, . . . , N and v = . . . , n, form a basis for
each algebra U t,χ

ε .
Order the previous monomials and assign to u ∈ U t,χ

ε the coordinate vector of
u with respect to the ordered basis. This construction identifies V with Z × Cd,
where d = lh+n+N , thereby giving A a structure of an affine variety.

Consider the vector bundle π : V → Z, (t, χ, u) → (t, χ). Note that the structure
constant of the algebra U t,χ

ε (p), as well as the matrix entries of the linear transfor-
mations which define the action of Uε(p) relative to the basis, are polynomial in χ
and t. This means that the maps

µ : V ×Z V → V, ((t, χ, u), (t, χ, v)) 7→ (t, χ, uv)
ρ : Uε × V → V, (x, (t, χ, u)) 7→ (t, χ, x · u)
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where (t, χ) ∈ Z, u, v ∈ U t,χ
ε (p) and x ∈ Uε(p), define on V a structure of vector

bundle of algebra and a structure of vector bundle of Uε(p)-modules. The fiber of
π above (t, χ) is the Uε(p)-algebra U t,χ

ε (p). �

If we fix χ ∈ Spec(Z0), we have from theorem 6 that the family of algebra U t,χ
ε (p)

is a flat deformation of algebra over Spec C[t].
Summarizing, if ε is a primitive lth root of 1 with l odd and l > di for all i, we

have prove the following facts on Uε:
• U t

ε and Uε(p) are domains because Uε(g) it is,
• U t

ε and Uε(p) are finite modules over Z0[t] and Z0 respectively (cf lemma 4
and proposition 10).

Since the L.S. relations holds for Uε(p) and U t
ε (cf proposition 8), we can apply the

theory developed in [DCP93], and we obtain that GrUε(p) and GrU t
ε are twisted

polynomial algebra, with some elements inverted. Hence all conditions of the char-
acterization of maximal order (see theorem 6.4 in [DCP93] ) are verified, so

Theorem 8. U t
ε and Uε(p) are maximal orders.

Therefore, Uε(p) ∈ Cm, i.e. is an algebra with trace of degree m.

Theorem 9. The set

Ω = {a ∈ Spec(Zε(p)), such that the corresponding semisimple
representation of Uε(p) is irreducible}

is a Zariski open set. This is exactly the part of Spec(Zε(p)) over which Uχ
ε (p) is

an Azumaya algebra of degree m.

Proof. Apply theorem 4.5 in [DCP93], with R = Uε(p) and T = Zε(p). �

Recall that Zε(p) is a finitely generated module over Z0(p). Let τ : Spec(Zε(p)) →
Spec(Z0(p)) be the finite surjective morphism induced by the inclusion of Z0(p) in
Zε(p). The properness of τ implies the following

Corollary 1. The set

Ω0 =
{
a ∈ Spec(Z0(p)) : τ−1(a) ⊂ Ω

}
is a Zariski dense open subset of Spec(Z0).

We know by the theory developed in [DCP93], that Sε(p) ∈ Cm0 , with m0 =
ll(w0)+l(wl

0)+rank(w0−wl
0). As we see in proposition 4, Sε(p) is a finite module over

C0, then Cε, the center of Sε(p) is finite over C0. The inclusion C0 ↪→ Cε induces
a projection υ : Spec(Cε) → Spec(C0). As before, we have:

Lemma 14. (i)

Ω′ = {a ∈ Spec(Cε), such that the corresponding semisimple
representation of Sε(p) is irreducible}

is a Zariski open set. This is exactly the part of Spec(Cε) over which Sχ
ε (p)

is an Azumaya algebra of degree m0.
(ii) The set

Ω′0 =
{
a ∈ Spec(Z0(p)) : υ−1(a) ⊂ Ω′

}
is a Zariski dense open subset of Spec(Z0).
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Proof. Apply theorem 4.5 in [DCP93] at Sε(p). �

Since Spec(Z0) is irreducible, we have that Ω0 ∩ Ω′0 is non empty.
We can state the main theorem of this section

Theorem 10.
degUε(p) = l

1
2 (l(w0)+l(wl

0)+rank(w0−wl
0))

Proof. For χ ∈ Ω0 ∩ Ω′0, we have, using theorem 9 and lemma 14,

degUε(p) = m = degUχ
ε (p),

and
degSχ

ε (p) = degSε(p).

But for all t 6= 0, we have that U t,χ
ε is isomorphic to Uχ

ε (p) as algebra. By con-
struction Uχ

ε (p) as a module over itself is irreducible, hence it is a simple algebra.
By rigidity of semisimple algebra ([Pie82] or [Pro98]) we have that Sχ

ε (p) = U0,χ
ε is

isomorphic to Uχ
ε (p). Then

degUε(p) = m = degUχ
ε (p) = degSχ

ε (p) = degSε(p).

And by theorem 7 the claim follows. �

As Uε(p) is a maximal order, Zε(p) is integrally closed, so we can make the
following construction: denote by Qε := Q(Zε(p)) the field of fractions of Zε(p), we
have that Q(Uε(p)) = Uε(p)⊗Zε(p) Qε is a division algebra, finite dimensional over
its center Qε. Denote by F the maximal commutative subfield of Q(Uε(p), we have,
using standard tools of associative algebra (cf [Pie82]), that

(i) F is a finite extension of Qε of degree m,
(ii) Q(Uε(p)) has dimension m2 over Qε,
(iii) Q(Uε(p))⊗Qε F ∼= Mm(F).

Hence, we have that

dimQ(Z0(p))(Qε) = deg(τ)

dimQε
(Q(Uε(p))) = m2

dimQ(Z0(p))(Q(Uε(p))) = lh+N+n

where, the first equality is a definition, the second has been pointed out above and
the third follows from the P.B.W theorem. Then, we have

lh+N+n = m2 deg(τ)

with m = l
1
2 (l(w0)+l(wl

0)+rank(w0−wl
0)), so

Corollary 2.

deg(τ) = ln−rank(w0−wl
0).

5. The center

We want to make some observations on the center of Uχ,t
ε and U t

ε that perhaps
they can be useful in the explicit determination of the center of Uε(g).
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5.1. The center of Uχ
ε (p). We want to explain a method which in principle allows

us to determine the center of Uχ
ε (p) for all χ ∈ Spec(Z0).

Let χ0 ∈ Spec(Z0(p)) define by χ0(Ei) = 0, χ0(Fi) = 0 and χ0(K±1
i ) = 1, we

set U0
ε (p) = Uχ0

ε (p).

Proposition 19. U0
ε (p) is a Hopf algebra with the comultiplication, counit and

antipode induced by Uε(p).

Proof. This is immediately since Jχ0 is an Hopf ideal. �

Proposition 20. let χ ∈ Spec(Z0(p))
(i) Uχ

ε (p) is an Uε(p) module, with the action define by

a · u =
∑

a(1)uS(a(2)),

where ∆(a) =
∑

a(1) ⊗ a(2).
(ii) Uχ

ε (p) is an U0
ε (p) module, with the action induced by Uε(p).

Proof. Easy verification of the proprieties. �

Proposition 21. Let x ∈ Uχ
ε (p). Then x is in the center of Uχ

ε (p) if and only if x
is invariant under the action of U0

ε (p), that is

Ei · x = 0, (5.1a)
Fi · x = 0, (5.1b)
Ki · x = x. (5.1c)

Proof. Let x ∈ Z (Uχ
ε (p)) then

Ei · x = Eix−KixK−1
i Ei = 0,

in the same way we obtain the other relations.
Suppose now that x verify the relations 5.1. Then

Ki · x = KixK−1
i = x,

imply that Kix = xKi. From Ei · x = 0 we obtain

0 = Ei · x = Eix−KixK−1
i Ei

= Eix− xEi.

its follows that Eix = xEi. In the same way we have Fix = xFi. Then x lies in the
center. �

So we can determine the center at t generic by lifting the center of the algebra
at t = 0.

5.2. The center of U t
ε . We want to study the restriction of the deformation at

the center of Uε(p). Since t is without torsion, it is easy to see that,

Proposition 22. i Zε,0 := Zε(p)[t]/tZε(p)[t] = Zε(p)[t]/tU t
ε ∩ Zε(p)[t].

ii Zε,0
∼= Zε(p).

We want to prove that

Theorem 11.
Zε,0 = Cε(p).
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Note that Zε,0 and Cε are integrally closed domain and finitely generated Z0(p)
algebras such that:

Lemma 15.
Q(Zε,0) = Q(Cε)

where Q(Zε,0) and Q(Cε) are the fields of fractions of Zε,0 and Cε respectively.

Proof. Note that Q(Zε,0) ⊂ Q(Cε) and Zε,0
∼= Zε(p). Since Uε(p) and Sε(p) have

the same degree, the observation at the and of section 4.2 implies that

dimQ(Z0(p) Q(Zε,0) = dimQ(Z0(p) Q(Cε)

and the result follows. �

So using classic results ([Ser65],[Mat89]) we can conclude that Zε,0 = Cε.
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