WEBOTS 2.0
User Guide

(© 1998, 1999 Cyberbotics
www.cyberbotics.com

September 13, 1999

(© 1998, 1999 Cyberbotics S.ar.l.
All Rights Reserved

CYBERBOTICS S.AR.L. (“CYBERBOTICS”) MAKES NO WARRANTY OR CONDITION,
EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
REGARDING THIS MANUAL AND THE ASSOCIATED SOFTWARE. THIS MANUAL IS
PROVIDED ON AN “AS-IS” BASIS. NEITHER CYBERBOTICS NOR ANY APPLICABLE
LICENSOR WILL BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAM-
AGES.

This software was initially developped at the Laboratoire de Micro-Informatique (LAMI) of
the Swiss Federal Institute of Technology, Lausanne, Switzerland (EPFL). The EPFL makes no
warranties of any kind on this software. In no event shall the EPFL be liable for incidental or
consequential damages of any kind in connection with use and exploitation of this software.

Trademark information

CodeWarrior is a registered trademark of Metrowerks, Inc.

IRIX, O2 and OpenGL are registered trademark of Silicon Graphics Inc.

Khepera is a registered trademark of K-Team S.A.

Linux is a registered trademark of Linus Torwalds.

Macintosh is a registered trademark of Apple Computer, Inc.

Pentium is a registered trademark of Intel Corp.

PowerPC is a registered trademark of IBM Corp.

Red Hat is a registered trademark of Red Hat Software, Inc.

Solaris and Solaris OpenGL are registered trademarks of Sun Microsystems, Inc.

All SPARC trademarks are used under the license and are trademarks or registered trademarks of SPARC
International, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

SuSE is is a registered trademark of SUSE GmbH.
UNIX is a registered trademark licensed exclusively by X/Open Company, Ltd.

VisualC++, Windows, Windows 95, Windows 98 and Windows NT are registered trademarks of Microsoft,
Corp.

Foreword

Webots was originally developed as a research tool for investigating various control algorithms
in mobile robotics. This simulation software has been carefully designed to facilitate the transfer
to real robots. It is currently specific to the Khepera robot and to the Alice robot. However,
forthcoming versions of Webots will include more robots.

This user guide will get you started using Webots. However, the reader is expected to have a
minimal knowledge in mobile robotics as well as in C programming. It is not necessary to have
a real robot to use Webots.

Cyberbotics is grateful to all the people who contributed to the development of Webots, Webots
sample applications, Webots User Guide, Webots Reference Manual, and the Webots web site,
including Yuri Lopez de Meneses, Auke-Jan ljspeert, Gerald Foliot, Allen Johnson, Michael
Kertesz, Aude Billiard, and many others. Moreover, many thanks are due to Prof. J.-D. Nicoud
(LAMI-EPFL) and Dr. F. Mondada for their valuable support.

Contents

[Tnstalling Webots 13
LT Hardware reqUIreMeENtS o v v it e e e e e e e e 13
[Z ReqiSralion ProCeduire v v v o e e e e e e e e e e e e e 13
L.Z.T Webots Floating LicCENSE System o o v v v .. 13
22 REOISEING . .« « o o o o e e et e e e e e e e 14
L3 Tnstallalion ProCEAUre o v v o i e e i e e e e e e e e 15
O N = O 1 < 7 T T G 16
L3 2 Macintosh PowerPC/ YellowDog LinuX, MKLCinux or Cinux BPC 16
L33 SUNSparc/Solars v v v o e e e e e e 16
L34 Windows 95, Windows 98 and WindowsINT 17
P \Wehois Basids 23
I RUNNNgQWEDOS o o e e e e e e 23
ZZ _Runningasimulalion i 23
23 _Exporting as animated GIF (UNTXonly) o v v v i i 25
24 Controllingthe pointof VIEW o e e e e e e e e 25
AT NavigalingINTNESCENE« v v v e e e e e e e e 26
2.4.Z_Swiiching between the World View and the Robot View 26
Z5 Edifingthe environment o e e e 26
5. T Creaiing, openingandsavingworlds 26
5.2 AddINgOD[ECES . . .« . v o v 28
Z53 MOVINgODIECES . . .« v v o i e e e e e e e 30
Z5.4 Cuf, copy and past€ OpPerations v v v v v vt e 31

5

6 CONTENTS

55 Changingthe Background 31
angingthe Ground 31

57 __Goingfurthér e 32
2.6 Working withthe Kheperarobpts v 32
6. T KNEPErAaOVEIVIBW vt v o et e e e e e e e e e e 32
6.2 CreatingasmulaiedKhegera v v v v v v v i 33
6.3 Movingthe Khnepera i 34
6.4 Sensorrepresentation e e 35
6.5 Moforsrepresentation Lo 36
6.6 Jumperconfiguration e e e 36
P67 EXtenSionTUIeISTK-BUS v v v v o v e e e e e e e e 36
6.8 _Kheperacontrolleérs 37
2.6.9 Moving o the real Khepera via the serial connegtion 38
E7 WOrKINgWITN SUPEIVISOIS v v v o v e e e e e e e e e e e e e e e 40
] orking wi eAliCeTrondt e 41
PBT ANCEQVEIVIEW o v v v v e e e e e e e e e e e e e 41
282 Programming the Alicerobot. 41
PO Miscellanealls o e e e e e 42
9.1 Hidingand showingthe butions 42
9.2 SeflingQup Preferentes o v v v v v i i e 42
210 DIreCiory STruCtuye o o o e e e e e e e e e e e e e e 43

B~ Sample Webots Applications 45

Bl _SIMPIEWHBE . . . o o v o e e e e 45
BZINVEWRt e e 46
B.3 phototaxy.wbt 47
B4 Jumperwlt e e 48
Boh finderwbt 49
BB _canwbt e e e 50
BZaffackerwbt e 51
BB hufferwbhit e 52

CONTENTS 7

B3O _TOWNWHL e e e 53
BITOROUSEWDt e e e 54
BT Chasembt e 55
BIZ SUcKpulling. Wbl 56
BI3@lcewbt o e e 57
B Programming with the Khepera AP 59
BET My TirSTKRNEPEraprogram v v v o e e e e e e e e e e e e 59
ATT SOUCECOUE o o v o i e e e e e e e e e e e e e e e e 59
ET.2Z Controllerdirectory Structreo 60
ET.3 Compilingthecontroller 61
BTZ4 Modifyingthe controllér i 61
A7 WebhofSexecufion SChame o o 62
BZ1T Kheperacontrolleérs e 62
A77 Ofherconifollers o 63
B3 Gefting Sensorinformation e e e e e 64
B4 Controlling ACIUATONS v v v e e e e 65
A5 Working With extensionTurmets v v v v v e e 65
BT KZTITUMRL o ot e e e e e e e e e e e e 66
A7 KOIOUTIUITEt o o o e e e e e e e e e e e e e 66
BS53 Gripperturmet o e e e 66
A4 PanoramiCiurtet e e e 67
b Programming with the Supervisor AP} 77
6.1 EAl ExternalAuthoringInterfate 77
B TT Geftingapointerioandde 77
b.1.Z Readinginformationfromthewadrld 78
ET.3 Editingtheworld 78

b.T.Z Sending messagestotherabots 78

p__Using GUI: the Graphical User Intertace AP|

[Advanced Webots programming

B.-I.T Tnclude file and |I5r§ly

B6.1.Z _GUT objects

ol1l.4 EUNCIIoONS

b.Z Getiing startéd

6.3 _Editing, adding and deleting gobs

6-3.T Editing gohs

6-3.Z_Adding gohis

B6.3.3__Deleting gols

6.4 Working with widgels

6.5 Going further

[7-ITHacking the world Tilés

VA | Qverview

[7-I.ZRobots and Supervisors

1o lexiures

I/.2 UsiIng external C/C++ libraries

[7-3_Interfacing with third party software

[7-3.T_Using a pipe based interface

[7-3:Z_Using other Inter Process Communication systems

<]

Iroubleshooting

B.I _Common problems and solutipns

B.Z How o I send a bug repoit ?

CONTENTS

List of Figures

[T WebotS registration PAUE . . « « « v v v v e e e e e e e e 15
I Defaulfworld 24
BZ SpeedOmeler e e 25
23 Creainganewworld 27
24 TCanproperfieSWINAOW v v o e e e e e e e e 29
Z5 TampproperlieS WINAOW o v v o i v e e e e e e e 29
26 WallproperfieS WINAGW+« v v v v e e e e e e e e e e 30
B.7__VeriiceorderinginWallnodes o v v i i i i 30
.8 Background COIDr o e e 32
29 Ground Properties v o v v e e e e e e e e e e 32
ZI0 The Kheperarohot it 33
E.IT Crealinga new oot e e e 34
EZ.IZ KheperapropermieSWIiNAdDW v v o v e e e e e e e e e e 34
ZI3 KNeperabusSplugin o o e 37
PIZ4_Successfulserialconnection o o e e e 39
215 Downloading a cross-compiled contrgller 40
P16 The Alicerobot 0 o e e 41
RI7 WebOISPreferentes o o v o v i e e e e e e 42
P18 WEDOTS direCIOry STTUCTUIE o v v v o e e e e e e e e e e e 43
.19 Webots directory Structlire e 44
0 7= Y] | 46
BZ photofaxy:whbt 47
B3 JUMPERWEDE . . o o v v ot e et e e e e 48

10

LIST OF FIGURES

A8 TRETEAIQUPDETTUMEt . « « « o o o e e e e e e
A9 The SIMUated QrPPETTUMEt . « « « o o o oo e e e e e
A.T0 The Tobot Window Tor THE GRPPETTUINEt . .« « o o v o oo e e e
A.IT The real Panoramic WiTEt (DTOTOTYPE) - « « « « v v v e e e e e e e e e
v S EU D EN) 1
A.T3 The robot Window 07 The PanoramiCTUITet . « .« « v o o v o e e e oo e

. omman vte forthe Alicerobot oo

. arameter pyte forthe Aliceropoto,

b.I Widgets available inthe GUI

List of Tables

[T Supported system confiqurations o v i e e e e
K.l Degrees orireedomior navigallon« v v v v v v v e e e
ZZ KNEPErasensorVallleS o . v v v i e e e e e e e e e e e
BT AlCEMESSATES - « - « v v v v e v e e e e e e e

11

12

LIST OF TABLES

Chapter 1

Installing Webots

1.1 Hardware requirements

Webots is supported on the UNIX / X11 systems described in falile 1.1 as well as on Windows
95, Windows 98 and Windows NT.

| Supported Hardware| Recommanded Hardwate Operating System |
PC i386 Pentium I RedHat 6.0, SUSE 6.1
or Debian 2.1
Macintosh PowerPC PowerPC G3 YellowDog Linux 1.1,
Linux PPC R5 or MkLinux DR3
Sun Sparc Workstation Sparc 20 Solaris 2.6

Table 1.1: Supported system configurations

OpenGL hardware acceleration is supported only on Sun with 3D graphics board and under
Windows with an OpenGL acceleration board (see below for more information). It will be soon
available under Linux as well.

1.2 Registration procedure

1.2.1 Webots Floating License System

Since Webots 2.0, a new license system has been introduced to facilitate the utilization of Webots
on several computers. This Floating License System (FLS) relies on a license server located in
Southern California (USA) which is contacted each time Webots is launched. Webots send to
the server a number of information, including the user ID and the hostname on which Webots
is running. This allows the server to decide whether or not the user could use Webots on that

13

14 CHAPTER 1. INSTALLING WEBOTS

machine according to his/her license. Then, the server replies to Webots to acknoledge or refuse
the utilization.

Hence, Webots can be installed to an unlimited number of computer, regardless of the license.
However, the daily utilization of Webots will depend on your license: According to the number

of licenses you purchased, you could use Webots simulataneously on a corresponding number of
computers. Note that simultaneously means the same day, that is you can change of computer
everyday if you need.

For example, if you purchase a single license of Webots, you could use it on a computer on
Monday, then another people could use it on an other computer on Tuesday, etc. This is very
useful, for example, for institutions sharing the utilization of Webots among different groups

of people. However, having a single license will require that you get synchronized with other
people, so that no more than one computer is used to run Webots the same day. If several people
need to use Webots the same day and cannot share the same computer (like with student classes,
or teams of researchers using extensively Webots), then, you will need to purchase a multiple
license corresponding to the number of simultaneous users.

Webots licenses determine the number of computers on which you can run Webots, not the
number of users using Webots at the same time. That is, with a single Webots license, several
users can run Webots on a server computer from their local terminals. The main disadvantage of
this is that the speed of Webots will decrease as the number of users increases and this may lead
to very poor performance when, for example, a class of students is using Webots from the same
server. The workaround to this kind of problem is purchasing additional licenses.

When installing Webots, you will get a license file, callgebots.key , containing your name,
address and user ID. This encrypted file will enable you to use Webots according to the license
you purchased. This file is stricly personal: you are not allowed provide copies of it to any third
party in any way, including publication of that file on any Internet server (web, ftp, or any other
public server). Any copy of your license file is under your responsibility. If a copy of your license
file is used by an unauthorized third party to run Webots, then Cyberbotics would disable your
license to prevent such an illegal use, preventing also you from using Webots until the problem
is fixed.

Webots licenses are (1) non-transferable and (2) non-exclusive. This means that (1) you cannot
sell or give your Webots license to any third party, and (2) Cyberbotics and its official Webots
resellers may sell or give Webots licenses to third parties.

If you need further information about the Webots Floating License System, please send an e-mail
to license@cyberbotics.com

Please read your license agreement carefully before registering. This license is provided within
the software package. By using the software and documentation, you agree to abide by all the
provisions of this license.

1.2. REGISTRATION PROCEDURE 15

1.2.2 Registering

In order to register your computer(s) to run Webots, you will have to fill out a form on the Web
and you will receive via e-mail therebots.key file corresponding to your license. The form
is available at the following web address:

http://www.cyberbotics.com/registration/webots.html (see figure I]1)
Hetscape: Cyberbotics: Webois Registration
File Edit View Go Communicator Help |
e A e m S &
r k& GoTo Ihttp:/fmm. cyberhotics. com/registration/webots. html f| (S
t‘ ---------- _
- - A
Thank you for filling this form:
Title: hir _||
First Name: I:
Last Name: I:
E -mail: II
Organization: |
Address: I:
Zip Code: |
City: I
Qb it |+ i
= [T00% | i e Ew @ WA ”

Figure 1.1: Webots registration page

Please take care to properly fill each field of this form. Berial Number is the serial
number of your own Webots package which is printed on the back side of the CD-ROM package
under the heading/N: .

After completing this form, click on th&ubmit button. Then, you will receive, within a

few hours, via e-mail to the address you mentioned in the form, your personal license file
(webots.key), which is needed to install a registered version of Webots on your system as
we will see below.

16

1.3

CHAPTER 1. INSTALLING WEBOTS

Installation procedure

In order to install Webots on your system, you will have to follow the instructions corresponding
to your computer / operating system listed below:

1.3.1 PCi386/ Linux

1.
2.

Log on agoot .

Insert the Webots CD-ROM and mount it (this might be automatic).
mount /mnt/cdrom rpm -Uvh /mnt/cdrom/libraries/Mesa-3.0-1.i386.rpm
rom -Uvh /mnt/cdrom/webots/webots-2.0-1.i386.rpm

You may need to set the environment variaMEBOTFHOMEo /usr/local/webots

This can be achieved from one of the following commands:

export WEBOTS _HOME-=/usr/local/webots

setenv WEBOTS HOME /usr/local/webots

depending on your shell. Note that the rpm installation script will automatically set this
variable for you in thdetc/profile file, so that any user of your system could launch
Webots.

Copy your personatebots.key file into the/usr/local/webots/ directory.

. Optionally, you may check theonvert program is installed on your system. This is

useful to save animated GIFs from Webots. If not installed, you will be able to find it in
thelmageMagick package which lies in thigoraries directory of the CD-ROM.

1.3.2 Macintosh PowerPC / YellowDog Linux, MKLinux or Linux PPC

The installation procedure is the same as for the PC i386 / Linux system, except that you must
install the RedHat packag®4esa-3.0-1.ppc.rpm andwebots-2.0-1.ppc.rpm cor-
responding to the Linux PowerPC architecture.

1.3.3 Sun Sparc/ Solaris

1. Log on agoot .

2. Insert the Webots CD-ROM and mount it.

3. Check whether the OpenGL library is installed:

what /usr/lib/libGL.so
If it is installed you should get a message indicating the release version. The most recent

1.3. INSTALLATION PROCEDURE 17

© N o O

10.

11.
12.

13.

version is 1.2 (as of December 18, 1998). If it is not installed or you would like to get the
latest release, you can either install it from the CD-ROM (inlibearies/opengl

directory), or go to

http://www.sun.com/solaris/opengl/

and follow the instructions to get it installed.

If you have Sun OpenGL installed, copy the filebots2.0Solaris.tar.gz lo-

cated in thewebots directory on the CD-ROM to youtusr/local/ directory. This
directory is taken as an example and can be changed according to the organization of
your file system. If you don’t want to install Sun OpenGL, you can use the packege
bots2.0SolarisMesa.tar.gz instead ofwebots2.0Solaris.tar.gz

Executecd /usr/local
Uncompress the packagginzip webots2.0Solaris.tar.gz
Untar the packagear xvf webots2.0Solaris.tar

Execute one of the following commands:
export WEBOTS _HOME-=/usr/local/webots
setenv WEBOTS HOME /usr/local/webots
depending on your shell.

Create a shortcut so that tivebots executable is in the PATH of any user:
In -s /usr/local/webots/webots /usr/local/bin/webots

Set the environment variable WEBOHOME of the users who want to use Webots to
lusr/local/webots as you did in (7).

Copy your personnalebots.key file into the/usr/local/webots/ directory.

You may need to install libpng on your system, if not already installed. You will be able to
find this package in thigbraries directory of the CD-ROM.

Optionally, you may check if theonvert program is installed on your system. This is
useful to save animated GIFs from Webots. If not installed, you will be able to find it in
thelmageMagick package which lies in thigraries directory or the CD-ROM.

1.3.4 Windows 95, Windows 98 and Windows NT

To install Webots on your Windows computer, go through the following steps:

1.

2.

Uninstall any previous release of Webots if any.

Insert the Webots CD-ROM and open it the explorer.

18 CHAPTER 1. INSTALLING WEBOTS

3. Go to thewebots/windows directory on the CD-ROM.
4. Double click on th&VEBOTSSETUP.EXEfile.

5. Follow the installation instructions.

Here are some explanations about the installation procedure:

1.3.4.1 Choose the compiler

In order to create the robot controller programs, you need to have a C/C++ compiler installed in
your computer. The compilers supported by Webots are Microsoft Visual C++ 6.0 and CygWin
20.1 GCC. You can obtain CygWin for free from the web site:
http://sourceware.cygnus.com/cygwin :

or you can find a copy on our ftp server:

ftp://ftp.cyberbotics.com .

During the installation, you will be prompted to choose one of these compilers. You can install
Webots first, and install the choosen compiler after, or vice-versa. You can also choose the option
“No compiler”. In this case, you will be able to view the examples included in the distribution,
but you will not be able to compile them. If you have your own compiler already installed
and want to use this, you have to choose the “No compiler” options, too. In this way, you
can develop your own controllers using your compiler, but you have to manage the compilation
routines manually. You will be able to change the compiler also after installation of Webots, by
editing and typing some changes in the text filakefile.scp (see later for more detalils).

1.3.4.2 OPENGL32.DLL & GLU32.DLL

Webots uses the OpenGL graphic library for rendering the 3D scene. The dynamically linked
librariesopengl32.dlI andglu32.dll will be installed in your operating system directory

(for exampleC: \Windows \System) if not already present. These are the Microsoft default
libraries that are included in the Windows installation CD staring from Windows 95 version B.

If you have an accelerated 3D graphics card that uses different libraries with the same name (like
with some 3DFX cards), make a backup and remove (or rename) these files before installing
Webots, otherwisepengl32.dll andglu32.dll will not be installed and Webots might

not run properly.

1.3.4.3 Hardware accelerated graphics cards

Webots has been tested on nVidia TNT2 32bits and on 3DFX Voodoo Banshee graphics cards
for hardware acceleration.

1.3. INSTALLATION PROCEDURE 19

1. nVidia TNT2 32 bits: The hardware accleration works fine for both the main window of
Webots and the turrets window. When the Khepera properties window is displayed, the
error “Pixel Format error” sometime occours. Webots stops working properly.

2. 3DFX Voodoo Banshee The new Quake Il compatible drivers are available from the
web sitewww.3dfx.com . These new drivers include an ICD OpenGL are not completly
compatible whith standard OpenGL (they are only tested to work for Quake IIl). Moreover
the HW acceleration is working only if you set the screen colors to 16 bits (65536 colors).
In this mode sometimes the same problem with the TNT2 occours (the “Pixel Format
error”), moreover the textures make Webots crash. The acceleration does not seems to
work for a properties window displayed using some turrets.

1.3.4.4 Compiler installation

Here is some help for installing the compilers.

1. Microsoft Visual C++ 6.0: Follow the normal procedure for installing this compiler. You
will be prompted to choose whethever to change the autoexec.bat (on Windows 9x) or the
PATH environment variable (on Windows NT). If you choose this way, you want have to
do anything more. Otherwise you have to do it manually. In order to set the environment
variable for the command line compilation you have to add inAbH OEXEC.BATiile
these lines:

path {path where MSVC is installed H\bin
vevars32

The firstline sets the path for the executable of the compiler ¢kaexe andlinker.exe),
the second line calls thRéCVARS32.BATfile that sets the environment for the compiler.
Reboot your computer. If you receive a message like “out of environment space” you have
to go to the “Properties” of the MBOS console and set, in the Memory tab, the initial en-
vironment space to a higher value (1024 for instance), or better, you can add the following
line to Config.sys

shell=c: \command.com /e:1024 /p

2. Cygwin: The Cygwin compiler is a GNU compiler, so you can get it for free from the web
site:
http://sourceware.cygnus.com/cygwin/download.html
or from our ftp server at:
ftp.cyberbotics.com/cygwin/full.exe
At the time writing the current release is the Beta 20.1. Install the software following the
installation instructions, then modify tJTOEXEC.BATIn order to set the environment
variable for command line compilation. You have to add these lines:

20 CHAPTER 1. INSTALLING WEBOTS

path {path where MSVC is installed Hbin
SET MAKEMODE=UNIX

3. Other compilers:

Webots performs the compilation and the link of the controller programs automatically if
you set the compiler as described. It uses the makefile included in each controller direc-
tory. In particular the filanakefile.vc6 is used for compiling with Microsoft Visual

C++ 6.0, and the filenakefile.gcc when you choose Cygwin. You can decide, at
istallation time, to avoid this automatic compilation choosing the “No compilers”. This
option is useful for two reasons: firstly you can view the examples in the distribution (all
the controllers are provided with the executable) without an installed compiler, and sec-
ondly you can develop your own controller program using your preferred compiler. In this
case you have to create your own makefile, and perform the compilation and the link to
Webots libraries manually. You can use the .lib import library files only if your compiler
accept the Microsoft Visual C++ version 6.0 format. For instance, version 5.0 of the same
compiler doesn’t work. This method was reported to work with Metrowerks Code Warrior
for Windows. If you successfully develop a controller program using a compiler different
from MSVC++6.0 or Cygwin, please send us the makefile and the procedures you used for
compiling. We will be happy to add your compiler to the list of the supported compilers
by Webots.

1.3.45 The MAKEFILE script

In order to perform automatic compilation Webots for Windows uses a script file. This is a plain
text file calledmakefile.scp and it is present in each controller directory. Each line of the
makefile.scp shows the command line you have to type in W8DOS%onsole in order to
make (compile and link) the controller program. Webots reads this file each time you load a new
controller or a new world from the Webots editor. If Webots finds a line that is not commented
(i.e. it doesn't start with the character “;” or “#”), it will execute the command. Your choose of
the compiler during the installation change thakefile.scp

1. If you choose MSVC++ 6.0 the file appears as:

: Makefile for VC++ 6.0
nmake /f Makefile.vcb

; Makefile for CygWin GCC
:make -f Makefile.gcc
;nocompilation

2. If you choose Cygwin the file appears as:

1.3. INSTALLATION PROCEDURE 21

. Makefile for VC++ 6.0
:nmake /f Makefile.vc6

; Makefile for CygWin GCC
make -f Makefile.gcc
;nocompilation

3. If you choose the “No compiler” option the file appears as:

: Makefile for VC++ 6.0
:nmake /f Makefile.vc6

; Makefile for CygWin GCC
:make -f Makefile.gcc
nocompilation

You are free to edit thenakefile.scp , for example to change the commmand line or to
change the compiler you are using, or to decide to use no automatic compilation. Because there is
onemakefile.scp in each controller directory, if you change tmakefile.scp , this will

change the behaviour of Webots only for the controller program in whicmideefile.scp

is present. So you can, for instance, decide to have some controller programs compiled with
MSVC++ 6.0, some with Cygwin, and some not automatically compiled. Remember these sim-
ple rules to avoid crashing Webots:

o no blank lines must appear in the file;

o the characters for commenting out a line are “;” or “#” and must be at the beginning of the
line;

o the first non commented line is the one used;

o the command in the non remarked line is used like at the DOS prompt: if it is incorrect
an error occurs and may stop the compilation or crash Webots. You are responsable for
ensuring the correctness of the command.

1.3.4.6 Cross-compilation

Cross compilation gives the possibility to compile the controller for the internal chip of a real
Khepera, download it into the memory of the robot and let it run standalone. The cross compi-
lation is allowed only using the GCC cross compilation. You must have the “khepack” package
provided by K-Team (for more information seevw.k-team.com or the manual provided
whith khepack).

For installation of the GCC cross compiler, follow the instructions in the khepack manual. Then
you will have to do the following:

22 CHAPTER 1. INSTALLING WEBOTS

1. You have to copy thkepack5.xx directory in the cross compiler directory. Thus if you
install the GCC cross compiler i@: \GCas suggested in the khepack instructions), you
must have the khepack in the following directo@y: \ GCGkhepack5

2. The khepack directory must be nank@dpack5 even if you have a different version (for
example 5.02). Please make a copy of the directory in the cross compiler directory (see 1.)
and rename it tkhepack5b .

1.3.4.7 The preferences file

When Webots is first ran the preferences file is created §&indows \system \.webotsrc
(wherec: \windows is the Windows directory). You can edit it and make changes using a text
editor (it is a text file) or directly from the Webots menu. You can also delete this file if something
goes wrong and then re-run Webots to create it again.

1.3.4.8 Uninstallation

Before installing a new version of Webots, you will have to uninstall the old one (if any) and
remove the entire directory and files. Do not delete ywebots.key file!

Chapter 2

Webots Basics

2.1 Running Webots

On UNIX, type webots to launch the simulator. On Windows click tils¢art button on
the system bar, go to tHerograms|Cyberbotics menu and click otwebots 2.0 You
should see the world window appear on the screen (see figure 2.1).

From there, a number of possibilities are available through menus and buttons. The control
wheels and their associated buttons on the left, right and bottom side of the window allow you
to navigate in the scene. You can also click in the scene to select an objeet (, Ball ,

Can, Ground , Khepera , Lamp or Wall) or double-click on an object to open its properties
window.

The “About” window is available from thé&bout... item in theFile menu. This window
displays the license information.

To quit Webots, you can either close the world window, or us€xhi¢ item in theFile menu.
2.2 Running a simulation
In order to run a simulation, a number of buttons are available, which correspond to menu items

in the Simulation menu:

Stop : interrupt theRun or theFast mode.

o | Step : execute one simulation step.

23

24

o

CHAPTER 2. WEBOTS BASICS

— = Word Editor: default.wht - B ok
File Edit Simulation Options |

gdlaus same (1o dm
B e »| M sam -

[75 LI Y |

Figure 2.1: Default world

Step : turn on/off the recording mode (to export the simulation to an animated GIF

image).

4

o

”

Run: execute simulation steps until t&¢op mode is entered.

Fast : same afkun, except that no display is performed.

TheFast mode corresponds to a very fast simulation mode suited for heavy computation (ge-
netic algorithms, vision, learning, etc.). However, since no display of the world is performed

2.3. EXPORTING AS ANIMATED GIF (UNIX ONLY) 25

duringFast simulation, the scene in the world window becomes black untiFdet mode is
stopped.

A speedometer (see figure]2.2) allows you to observe the speed of simulation on your computer.
It indicates how fast the simulation runs comparing to real time. In other words, it represents
the speed of the virtual time. If the value of the speedometer is 2, it means that your computer
simulation is running twice as fast as the corresponding real robots would do. This information
is relevant inRun mode as well as ifFast mode.

———— B4 ms

Figure 2.2: Speedometer

The time step can be choosen from the popup menu situated next to the speedometer. It indicates
how frequently the display is refreshed. It is expressed in virtual time milliseconds. The value of
this time step also defines the duration of the time step executed duriSgegpemode.

In Run mode, with a time step of 64 ms and a fairly simple world displayed with the default
window size, the speedometer will typically indicate approximately 0.5 on a Pentium Il / 266
without hardware acceleration and 4 on an Ultra Sparc 10 Creator 3D.

2.3 Exporting as animated GIF (UNIX only)

TheRecord mode will allow you to export a simulation as an animated GIF file that can further

be used to set up nice web pages or multi-media presentations. In order to proceed, you will need
to have the convert utility installed (see intallation procedure in this manual). Webots will save
each image in PNG format in the temporary folder. Then, it will invoke the convert program to
produce the animated GIF file from the PNG images. However, note that the animated GIF files
produced here are not optimized and hence can be huge! So, reduce the size of the view as much
as possible, and don’'t make too long movies... Actually, each image is stored in the GIF file
whereas it would be possible to optimze it by storing only the changes from one image frame to
the other. In order to proceed such an optimization we recommand you to use the Gimp software
(GNU Image Manupulation Program) which is a very powerful free software tool. This software

is included on the Webots CD-ROM and can be used under the terms of the GNU General Public
License.

On Windows this feature is not working.

2.4 Controlling the point of view

The view of the scene is produced by a camera which is set according to a given position and
orientation. You can change this position and orientation to navigate in the scene. Moreover you

26 CHAPTER 2. WEBOTS BASICS

can set the camera to follow the movements of a given robot or to remain fixed.

2.4.1 Navigating in the scene

To navigate in the 3D scene, you can use the three control wheels situated on the edges of the
world window. Each wheel is associated with a button allowing to switch between a rotation and

a translation. Hence, you can control six degrees of freedom to move the camera in the scene.
These degrees of freedom are also available from the keyboard when the world window is active
as explained in tablg2.1.

| axis | Rotation| modifier | keys | Translation | modifier | keys|

X tilt shift | < — | horizonal scroll| ctrl 11
Y pan shift — — | vertical scroll ctrl T1
Z roll —— zoom 11

Table 2.1: Degrees of freedom for navigation
Notice that if an object is selected in the scene, the camera will rotate, according to the selected
axis, around this object.
2.4.2 Switching between the World View and the Robot View
You can choose between two different points of view:

o World View : this view corresponds to a fixed camera standing in the world.

o Robot View : this view corresponds to a mobile camera following a robot.

You can switch between both modes using the last item ofthmilation menu. But before
you go into this menu, you have to select a robot if you waRbaotView from this robot, or
unselect any robot if you want&orld View (the most convenient way to unselect any robot is
to click on an object or in the background of the scene). Then, the last item $irthdation

menu will be set appropriately, so that you can select eitheRthteot View or the World
View .

2.5 Editing the environment

2.5.1 Creating, opening and saving worlds

When the simulator is launched, a default world is loaded in the world window. In order to
create your own world, you can go to tkRde menu and select thidew... item. A popup

2.5. EDITING THE ENVIRONMENT 27

window will appear as depicted on figyre]2.3 letting you choose the size of the ground grid and
the number of plates it is made of.

S sl Create a Mew YRERETS

_ H | 1.0 m.
- z | 1.0 .
b |2
Flates °F

Create | Zancel |

Figure 2.3: Creating a new world

If any of these fields is set to zero, no ground is created.

TheFile menu will also allow you to perform the standard file operatigdgen..., Save
andSave As... ,respectively, to load, save and save with a new name the current world.

The following buttons can be used as shortcuts to menu items:

|j.'=

o New...

3

Open...

H

Save

The default worlds directory contains a lot of examples of worlds files (files ending up with the
.whbt suffix) which are described in chapter 3. However, on UNIX you won't be able to save

your own worlds in this directory unless you are logged omaag . We do not recommend

that you do so, however. On Windows, there is no protection on this directory and the files it
contains, but it's better if you do not use this directory for your own worlds files. Instead, you

should create worlds directory in your home directory and save your own world files there.

28 CHAPTER 2. WEBOTS BASICS

2.5.2 Adding objects

Several kinds of objects can be added from the world window. They are available through
theEdit menu or the corresponding buttons:

o}

New Ball... a ball with which the robots can play.

J New Can... acylinder that can be grasped by the Khepera robots equipped with
a gripper turret.

o}

o %1 New Lamp... a light bulb emitting light visible by the infra-red sensors of the
Khepera robot.

o 0 New Robot... arobot.

o . New Wall... a rectangular parallelepiped wall, which is typically an obstacle
for robots.

For the creation of each of these objects, a popup window will appear, displaying the properties
of the object. You will then be able to change the position, orientation, color, etc. of the objects.
Usually the coordinates indicate the center of the object, just like in VRML 97. Howevey, the
coordinate of th€Can is an exception. It should always be set to 0, indicating that the can is set
on the ground. Here are some examples of properties windows depicted on figuieg 2.4, 2.5 and
8.

The Resistivity parameter of th€an object corresponds to the electrical resistivity of the
object as it can be measured by the sensor of the Gripper turret of the Khepera robot. This value
ranges from O to 255.

Thelntensity parameter of the Lamp object allows one to change the power of the light bulb,
so that infra-red sensors are more or less sensitive to this object. A value of 0 means that the lamp
is off while a value of 1 means that it is on with the default power. However, unlike with most
3D rendering software, there is no special lighting rendering effects due to the presence of such
aLampin the scene. Such effects would slow down drastically the simulation speed.

TheWall is probably one of the most complex object to edit since it contains a variable number
of vertices. By default a four-verticé&/all is created, but you can add new vertices. You can
also remove vertices as long as at least three vertices remain. For each vertice, you can edit its
2D coordinates, so that you define a plane shape that is extruded to prodWalthePlease

note that the order of the vertices is important: like in VRML 97, when progressing in the list of

2.5. EDITING THE ENVIRONMENT 29
— g Can Properties ET
— Geometry
Height {mj 0,04 Radius {m) 0,008
Position (m) X |0 Z\0n
— Appearance
Zolar R |D G|0+3 B |0,8
— Properties
Resistivity 1
Close | Marme Unzelect | Apply |

Figure 2.4: Can properties window

vertices, the right-hand direction (perpendicular to the progression) should always point to the
inside of thewall object. The figuré 217 explains this rule for ordering vertices.

Theheight , color , position
the corresponding text fields.

andorientation

of theWall can be changed by editing

Remember that to display the property window of an object in the scene, you will have to
double-click on this object. Robots are special objects. The properties window of robots will

be discussed later in this manual.

— - Lamp Properties O
— Geometry

Position (m) ¥ |0 Y| 0,05 z |0
— Propetties

Intensity 1

Close | Mame | Llnselect| Apply |

Figure 2.5: Lamp properties window

30 CHAPTER 2. WEBOTS BASICS

— g Wall Properties ET
— Geometry
H z
Foints (m) |IZI |D+5 A
e |D,5 |—D,5 J
Delete | 0.5 | -0.5
|-0.5 Jo5 &
Position (m) 0 0
Crrientation {deg.) o | [
Height {m) |D+DB
— Appearance
Colar R |[:I+B G|D,2 B |I2I.3
Close | Marme | Unselect | Apply |

Figure 2.6: Wall properties window

2.5.3 Moving objects

A number of buttons are available in the bottom right side of the main window. They allow you
to select and move objects in the world:

o ﬂ This turn button allows you to rotate objects: click on this button to enter the turn
mode, then click on an object to select it and then click somewhere else and drag the
mouse pointer to rotate the selected object.

6

Figure 2.7: Vertice ordering in Wall nodes

2.5. EDITING THE ENVIRONMENT 31

o | This lift button allows you to translate objets along the vertical axis. It is especially
suited forBall andLamp objects.

o 2 This move button allows you to translate the object on the ground using the familiar
drag’'n’drop interface. It is probably one of the most useful modes.

o h This pointer button allows you to select an object by clicking on it and to open its
properties window by double-clicking on it.

2.5.4 Cut, copy and paste operations

The standard editing operations are avaible either fronkthe menu or the following buttons:

o

o Cut

o Copy

o Paste

In order to perform th&€ut or Copy operation, you first need to select an object by clicking on

it in the scene. Pasted objects will appear close to their original clone. You will have to turn,
move, or edit the coordinates in their properties windows to move them to the desired location
and orientation. Note that robots are special objects which can be cut out, but not copied nor
pasted.

2.5.5 Changing the Background

The Background... item in theEdit menu will allow you to define the color of the back-
ground in the world (see figuie 2.8). This might be useful, especially when using cameras, to
improve distinction between objects and the background.

2.5.6 Changing the Ground

TheGround... itemintheEdit menu will allow you to redefine the ground (size and number
of plates) on which robots evolve. It will raise the properties window depicted in figure 2.9.

The first and second colors refer to the two colors used to create the ground grid. You can change
them to fit your needs.

32

—

Background

CHAPTER 2. WEBOTS BASICS

S

Calar

Dk|

R (0.4

G |07

| Apply |

B |1

Cancel |

Figure 2.8: Background color

— = Ground Properties e
— Geometry

Size (m.) 20,5 Z0.5

Flates # 4 Z |4
— Appearance

First Color | 1 |1 0

Secand Color |D,8 |D.5 |0,3

Close | Mame | Select | Apply |

Figure 2.9: Ground properties

2.5.7 Going further

It is also possible in Webots to use a subset of VRML 97 nodes. However, these nodes are not
available directly from the built-in Webots world editor. Instead, you should use a text editor to
edit the world files and add VRML 97 nodes you need. More details about this technique are
provided in this manual in thAvanced Webots Programmicbapter.

2.6 Working with the Khepera robots

2.6.1 Khepera overview

Khepera is a mini mobile robot (5 cm diameter, 70 g.) which was developed at EPFL - LAMI by
André Guignard, Edoardo Franzi and Francesco Mondada (see figure 2.10). It is commercially
available from K-Team S.Ahttp://www.k-team.com). This robot is widespread in many
Universities all over the world and is used mainly for research and education. It has two motor

2.6. WORKING WITH THE KHEPERA ROBOTS 33

wheels and is equiped with 8 infra-red sensors allowing it to detect obstacles all around it in
a range of about 5 cm. These sensors can also provide information about light measurement,
allowing the robot to look for light sources. Khepera supports a number of extension turrets
including vision turrets, a gripper, a radio turret, a general I/O turret, etc. However, not all of
these turrets are implemented in Webots.

— = Infonmation S

khepera Mohile Robot

This mini-mohile robot was developed at
L&kl - EPFL by Edoardo Franzi, André
Guignard and Francesco Mondada. It is
now a commercial product distributed by
k~team 5.4, (hitpihasne k-team.com).

It features:
I P - a diameter size of Scm.
Ill” I | | ”' p - Z independent DC motars with encoders.
- & infra-red sensors (emitterfreceiven).
Hl ;[H Fl” ' - an onboard 68331 microcantraller.
. A gl

- an aonboard battery (30 min. autonomy)
- a modular design with extension modules.

pr‘l]l i

motar speeds range from - 20 to +20.
IR reflection values range from 0 to 1023.
IR amhient values range from 0 to 511,

Ok

Figure 2.10: The Khepera robot

2.6.2 Creating a simulated Khepera

To create a robot, you can use either thew Robot... menu item or the corresponding
button as seen previously. A popup menu will let you choose the type of robot you want to create
(see figur¢ Z.11). Choose Khepera. You will be also prompted to assign a name to the robot. You
could choose any name you like. Let's chod&ax, as an example:

The properties window dfax should then appear (figure 2.12. However, it is possible to obtain
the properties window of any robot by double-clicking on the desired robot in the world window.

If Max isn’t a good name for you, you can change this by clicking onNaenebutton. The
Unselect button can be used to unselect the robot in the world window ; this button will then
be changed into &elect button allowing the robot to be selected again. This might be very
useful when there are several robots in the world and you don’t know which one is represented
in your robot properties window. Th&pply button performs the position changes if needed.

34 CHAPTER 2. WEBOTS BASICS

==} HNew Robot - X
Typs: _Khepera - |
Mame: | Mzl

] 4 | ancel |

Figure 2.11: Creating a new robot

— =i Khepera Properties OO
— Khepera robot

aimulated — 1

R W Distance 4 I
_ W Light I- |
B botors

Caontraller | braiten

E-bus | -
W Position: % 0 z 0 o< 0
Close | Mame | Llnselec:t| Apply |

Figure 2.12: Khepera properties window

Finally, theClose button allows you to close this window. To get back to it, you will have to
double-click on the corresponding robot in the world window.

There is theoretically no limit to the number of robots being simulated. However, the limit is
actually the limit of your computer resources (memory, speed, inter-process communications,

etc.) and your patience...
2.6.3 Moving the Khepera
Several ways allow you to move the robot. You can either:

o use the buttons for moving / rotating objects.

o click on the little arrow buttons on the robot representation (between both motors).

2.6. WORKING WITH THE KHEPERA ROBOTS 35

| color | distance measuremeht light measurement |

blue | no obstacle detected no light source detected
cyan obstacle away light source away
green obstacle nearby light source nearby
yellow obstacle close light source close

red obstacle very close | light source very close

Table 2.2: Khepera sensor values

o press the arrow keys on your keyboard (however, you must be careful that the robot window
is the current active window).

o type new coordinates and orientation in teZ anda text fields. X andZ correspond to
the position of the robot on the floor, expressed in meters (m), whiderresponds to the
orientation of the robot expressed in degrees (deg). You will have to press the enter (or
return) key after editing each coordinate or orientation field, so that your changes are taken
into account.

Moving the robot this way won’t prevent it from entering obstacles! However, when the robot
moves on its own (i.e., with a controller), it cannot penetrate obstaclesPdsiion check

box allows one to enable and disable the display of theéseanda coordinates. It might be
useful to disable such a display in order to accelerate a little bit the simualtion.

2.6.4 Sensor representation

The robot properties window contains a lot of information on the robot sensors and motors.
The Khepera robot has eight infra-red sensors all around allowing it to measure distance from
obstacles by emitting infra-red light and measuring the quantity of reflected light. These sensors
can also be used as passive sensors to measure the ambient infra-red light. Each of the infra-
red sensors is represented as a rectangle for distance measurement and as a triangle for light
measurement. These rectangles and triangles appear most often blue but their color actually
ranges from blue to red according to the measurements performed by the corresponding sensor
as explained in tablg2.2.

Light sources are typicallyyamp objects while obstacles can be eitt@an, Box, robots or

Wall objects. Numerical values are also available for both distance measurement and light
measurement. However, only one numerical value can be displayed at a time for each sensor.
You can choose between the light and the distance numerical value with the corresponding check
boxes situated at the left hand side of the window. Numerical values can be described as follows:

o Distance values range from 0 (no obstacle detected) to 1023 (obstacle very close).

o Light values range from O (light source very close) to 512 (no light source detected).

36 CHAPTER 2. WEBOTS BASICS

Since these values are noisy, just like with the real sensors, they are always oscillating, giving a
rough approximation of the actual physical value.

The model of the infra-red sensors is based upon a lookup table for light and distance measure-
ment since the response is non-linear with the distance. The color of object has some effect on
the distance measurements since red or white objects reflect more infra-red light than green or
black objects. A random white noise of 10% is added to each measure (light and proximity) to
make the modeling of the sensor realistic.

2.6.5 Motors representation

The Khepera robot has two independent motor wheels allowing it to move forward, to move
backward, and to turn. Each of the two motors is symbolized by a square on the robot rep-
resentation. This square contains an arrow indicating the velocity of the motor (direction and
amplitude). A numerical value is also displayed which ranges from -20 to +20. Negative speed
values can be used to make the robot go backwards. Each of these motor speed representations
can be enabled or disabled by thi®tors check boxes on the left hand side of the robot win-

dow. However, motor values can only be assigned by a robot controller, so you won'’t be able to
observe different motor values unless you load a controller which is driving the motors and make

it run (see later).

2.6.6 Jumper configuration

The jumpers represented below the left motor can be switched on and off by clicking on them.
Since the robot can read these jumpers, this interface can be used as a communication way
between the robot and you. However, the jumpers configuration should not be changed when
using a real robot in remote control or download mode.

2.6.7 Extension turrets: K-Bus

Like on the real Khepera robot, it is possible with Webots to add extension turrets through the
Khepera extension bus called the K-Bus. In order to plug-in an extension turret into your virtual
Khepera, you just need to click on theBus button. This will make a window appear in which

you will be able to select an extension turret for the robot as depicted in figure 2.13.

The central popup menu in the bottom of the window will allow you to plug-in a number of
extension turrets, including:

o Khepera K213 : a black and white linear camera.

o Khepera K6300 : a color video camera.

2.6. WORKING WITH THE KHEPERA ROBOTS 37

—

Plug-in a module {K-hus) - X

khepera Gripper Turret

The gripper turret for the Khepera robot is a
commercial product developed by K-Team
5.8, It allows Khepera to detect the presence
of an object, to grasp it, to measure its
electrical resistivity, to load, unload, and
ungrasp it. Hence ohjects can be
characterized, manipulated and moved.

-

It features:

L e L]

T, | 11 e T : - 2 DC motors with absolute encoder.

D {111/ 1 - Optical barrier for object detection.
P 4 - Resistivity measure of the gripped ohject.
Il ||[r|fl - 65 %90 %10 mm.

° o - About 50 9.

Mote: this is an expandable turret.

Ok Gripper turret _|| Cancel

Figure 2.13: Khepera bus plugin

o Khepera Gripper : agripper allowing Khepera to gra§fan objects.

o Khepera Panoramic : a 240 degree linear black and white panoramic camera.

More information on these extension turrets will be detailled later in this manual.

2.6.8 Khepera controllers

In order to load a controller into the memory of a virtual robot, you will need to click on the
Controller button. Then, a file selector window will allow you to look for a directory whose
name ends up with the&khepera suffix. Such a directory is a controller directory for the
Khepera robot. It contains a number of files which will be explained later in chapter 4. As an
example, you can try out thieraiten.khepera controller. This controller will make the
robot move and avoid any obstacle.

A controller is actually a simple program written in C or C++ language. It can be compiled
either by you or by Webots. Then, Webots launches the controller as an independent process and
communicates with it through inter-process communications systems.

A GUI (Graphical User Interface) is also available and will allow you to set-up windows display-
ing your data and design your own user interfaces fulfilling your specific needs.

38

CHAPTER 2. WEBOTS BASICS

2.6.9 Moving to the real Khepera via the serial connection

From the robot properties window, it is very easy to switch from a virtual robot to a real robot.

In order to proceed, you will need a real Khepera robot connected via a serial link to your
computer. From Webots you can choose whether to control the real robot from the simulator or
to cross-compile and download the controller to the real robot. In the first case, data is being sent
continuously from Webots to the Khepera and vice versa, i.e., to read sensor data and send motor
commands. In the second case, the robot controller is cross-compiled for the real robot processor
and downloaded to the real robot which in turn executes the controller on board and no longer
interacts with the simulator.

2.6.9.1 Remote control of the real Khepera

Here are the steps to follow in order to set up a real robot connected to the simulator:

o Load a controller into the simulated robdiréiten.khepera is a good example for

testing the real robot control).

o Connect the real robot to one the serial ports of your computer (see the manual of your

robot to proceed).

o Set the robot serial mode to 38400 baud (mode 3) on both the simulated robot and the real

robot. Hence, the jumper configuration of the real robot should correspond to the jumper
configuration of the simulated robot. The jumpers of the simulated robot can be config-
urated from the widget situated just below the left motor in the robot window. However,
the default configuration of the simulated robot is actually mode 3 which corresponds to
38400 bauds. Note that slower serial modes can be used as well, i.e., mode 1 and mode 2.

Check that the serial ports are properly configured by checking the preferences window
(Options menu,Preferences... item). On UNIX, the serial ports A and B should
point to the corresponding directories. Default values should be all right. Normally, these
directories should be readable and writable from any us®r-(w-rw-). If not, set the
attributes of these files properly using ttlemod command asoot . On Windows the
name of the serial ports are typically COM1 and COM2. To verify the correctness of the
settings, please refer to your main board manual.

In the upper left corner of the robot window, change the popup menu$iomlated to
Remote Serial A orRemote Serial B according to the port on which the robot
is connected.

o A popup window should inform you that everything goes right as depicted in figure 2.14.

2.6. WORKING WITH THE KHEPERA ROBOTS 39

— =i Message O

Connection established at 38400 baud.
Bios version: .02
Frotocal wersion: 5.01

Ok

Figure 2.14: Successful serial connection

o Click on theOk button and run the simulation. The real robot should move while avoiding
obstacles. You will be able to see the sensor values of the real robot in the robot window
updated in real time.

o For timing reasons, the transfer to the real robot needs the speedometer indicates a value
close to 1, which means the simulator runs close to real time. In order to achieve this, you
should choose a time basis for the refresh (i.e., in 8, 16, 32, 64, 128 etc.) which give a ratio
as close as possible to 1. The time basis value will depend on the complexity of scene, the
power of your computer, the complexity of your control algorithm, etc.

2.6.9.2 Cross-compiling for the real Khepera

Here are the steps to follow in order to cross-compile and download the controller to the real
robot:

o Load a controller into the simulated robot.

o Connect the real robot to one the serial ports of your computer (see the manual of your
robot to proceed).

o Set the robot serial mode to 9600 bauds (mode 5) on both the simulated robot and the real
robot. Hence, the jumper configuration of the real robot should correspond to the jumper
configuration of the simulated robot. The jumpers of the simulated robot can be configured
from the widget situated just below the left motor in the robot window.

o Check that the serial ports are properly configured by checking the preferences window
(Options menu,Preferences... item). The serial ports A and B should point to the
corresponding directories. Default values should be all right. Normally these directories
should be readable and writable from any usew(rw-rw-). If not, set the attributes
of these files properly using ttdhmod command asoot .

o In the upper left corner of the robot window, change the popup menu Siomulated
to Download Serial A or Download Serial B according to the port on which
the robot is connected.

40 CHAPTER 2. WEBOTS BASICS

o If the controller has cross-compiled correctly, a popup window should inform you that the
binary file is being transferred to the real robot (figure2.15). After that, the controller will
be automatically executed on the robot. If the robot has on-board batteries, you might want
to unplug it from the serial connection.

— = Download: braiten E

Transfering ...

32 %

Figure 2.15: Downloading a cross-compiled controller

2.6.9.3 Software requirements

In order to make use of the cross-compilation feature of Webots 2.0 you must have properly
installed the GNU C based cross-compiler for the Khepera robot in your system. Please refer to
the corresponding software and manuals provided by K-Team to set up such an environment.

2.7 Working with Supervisors

A supervisor is a program similar to a robot controller. However, such a program is not associated
to a robot but to a world. It can be used to supervise experiments. The supervisor program is
able to get information on robots and on some objects in the world Bléde objects) and to
communicate with robots. A supervisor can be used to achieve the following:

o program inter-robot communications.

e}

record experimental data (like robot trajectories).

e}

control experimental parameters.

e}

display useful information from robots.

define new abstract sensors.

e}

control the Alice robots.

e}

Like with robot controllers, a GUI library is available to set up windows with buttons and other
widgets. Such windows are useful to display and control what's going on in the experiment.
Supervisor programming is described in chapter 5 of this manual.

2.8. WORKING WITH THE ALICE ROBOT 41

2.8 Working with the Alice robot

2.8.1 Alice overview

Figure 2.16: The Alice robot

The Alice robot is a very small and cheap autonomous mobile robot. It was developed by Gilles
Caprari from EPFL - DMT - ISR - ASL. Its size (23mm x 21 mm x 16 mm) makes it suitable
to study collective behavior with a large quantity of robots on a table. Two watch motors with
wheels and tires can drive Alice at a speed of 20 mm per second. A PC16C84 microcontroller
with 1Kword of EEPROM program memory allows developers to reconfigure its intelligence.
This robot is powered by two watch batteries providing it with an autonomy of about 8 hours.

A number of extension turrets can be plugged-in on the top of the robot. The only extension
turret used in Webots is the IRCom turret, which is depicted on figure 2.16.

2.8.2 Programming the Alice robot

In its current configuration, the Alice robot needs to be remote controlled, using an infra-red
remote controller. In order to receive the infra-red signals from the remote controller, Alice needs
an infra-red reception turret called Alice IRCom. Actually, this turret fulfills two functions: (1)

it receives IR signals from the remote controller and (2) two other infra-red sensors can be used
for obstacle avoidance, using the same principle as with the Khepera robot.

This infra-red remote control is modeled within Webots through the use of the Supervisor API.
A supervisor controller can control up to 8 Alice robots in a world by sending them messages.
Hence, there is no Alice controller programs, but only supervisor controllers sending messages
to the Alice robots. Such messages indicate a pre-wired behavior to be executed by the Alice

42 CHAPTER 2. WEBOTS BASICS

robot. This technique, as well as the complete description of messages, is explained later in this
manual.

2.9 Miscellaneous

2.9.1 Hiding and showing the buttons

The Options menu allows you to hide or show the two rows of buttons in the world window.
The Hide Edit Buttons item will remove the buttons used for editing the world while
theHide Simulation Buttons item will remove the buttons controlling the simulation.
When the buttons are hidden, the same menu will allow you to display the buttons back using the
Show Edit Buttons or Show Simulation Buttons items.

2.9.2 Setting up preferences

ThePreferences... item in theOptions menu allows you to set-up the serial port device
files as seen previously and also to set-up a number of default paths and files (sgeTigure 2.17).

— =4 Preferences - X
— Paths and Files

Default world: | default ubt
Waorld path: |jhamefjuhnfwebutsjwur“lds
CrossiComp path:| Shone/GCC

Controller path: |jhu:umefju:uhn,-"mebn:utsﬁ:u:untr*oller“s

— Serial ports

.ﬁ.:| Soev foual B: | foev foual

k. Cancel

Figure 2.17: Webots preferences

The figure Z.17 describes the typical properties on UNIX. On Windows you will@i@dAland
COManstead ofdev/cua0 and/dev/cual and the following directoriesC:
Program Files

Webots2.0
worlds , C:
GCC

andC:

2.10. DIRECTORY STRUCTURE 43

Program Files
Webots2.0
controllers

The Default world is changed each time you quit Webots. It is replaced by the current
world when Webots quits.

TheWorld path is the path in which Webots is looking for world files. It is changed when
successfully loading a world from a new directory.

The Controller path is the most important since it is the path in which Webots will look

for controllers directories when loading a world containing a supervisor and / or robots. Note
that Webots will also look in its owlVEBOT3OME/controllers directory. Hence, if you

load a world and neither the controller path norWEBOT3$OME/controllers directories
contain the requested controllers mentioned in this world, then Webots will fail running this
world. So, when setting up your own development environment, we recommand that you create
your owncontrollers directories for robots and supervisors in your home directory (or sub-
directories) and you set up appropriately the corresponding paths in the Preferences window
(although Webots should set it automatically when you load a new controller).

2.10 Directory structure

On UNIX, thewebots directory, typically located irusr/local , iIs organized as depicted
in figure[Z.18.
webots/ LICENSE.html license agreement for the preview version

biosKhepera cross-compilation library for Khepera
controllers/ controller program examples
images/ images used internally by webots
include/ include files necessary to the controllers
lib/ libraries needed by the controllers
webots Webots application
webotsrc default .webotsrc file
webots.key license file
webots.xpm Webots logo
worlds/ environment examples

Figure 2.18: Webots directory structure

On Windows the structure is almost the same (see figure 2.19).

44

webots/ LICENSE.html
biosKhepera
controllers/
images/
include/
lib/
webots.exe
webotsrc
webots.key
windows.html
worlds/

CHAPTER 2. WEBOTS BASICS

license agreement for the preview version
cross-compilation library for Khepera
controller program examples

images used internally by webots
include files necessary to the controllers
libraries needed by the controllers
Webots executable

default .webotsrc file

license file

Information for the Windows user
environment examples

Figure 2.19: Webots directory structure

Chapter 3

Sample Webots Applications

This chapter provides an overview of the sample applications provided within the Webots pack-
age. All these examples correspond to world files located imaots/worlds directory

and can be easily tested while reading this chapter. The source code for the examples is located
in the webots/controllers directory. For each example, a short description is provided.
However, this description does no attempt to be exhaustive and should be considered as an intro-
duction. More details can be found in the source code.

3.1 simple.wbt

This is the default world. It is a very simple square area with a few colorful boxes and a Khep-
era robot. The Khepera has a Braitenberg controller (source code longthen.khepera
directory) and no extension turret, and therefore moves forward while avoiding obstacles.

45

46 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

3.2 five.wbt

— 4 Word Editor: Tive wht - B
File Edit Simulation Options |

glalalo slmlal oo e
m e) »|m1zams =

h

Moo o S T k|

Figure 3.1: five.wbt

This example is a bit more interesting since five Khepera robots are moving in a maze. Each of

these robots has a Braitenberg controller loaded. Running the simulation will make all the robots

move in the maze while avoiding each other as well as obstacles. It can be entertaining to select
one robot and choose tiRobot View item in theSimulation ~ menu, then to zoom on this

robot using the control wheels for navigating in the scene. The source code for these controllers
is in thebraiten.khepera directory.

3.3. PHOTOTAXY.WBT 47

3.3 phototaxy.wbt

— 4 Word Editor: phototaxy . wht - 0 X
File Edit Simulation Options |

Glaao slela o ém
mulel» Mo

0,13 128 ms

[Fo LY]

Figure 3.2: phototaxy.wbt

This example makes use of the light measurement capability of the infra-red sensors of the Khep-
erarobot. A light source is set in the center of the environment and the robot uses light measure-
ment information to try to find it. You will see the robot moving toward the light and avoiding
the foot of the light (which is an obstacle) and going away from the light, then coming back and
so on. The source code for this controller is in gietotaxy.khepera directory. It can be
entertaining to drag the light source with the move cursor, to observe the robot running after the
light.

48 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

3.4 jumper.wbt

— - LR Al — - O X
File Edit Simulation Options |

olaasc xee 1.8
ey Mo om

— Khepera Properties T
— Khepera robot
Simulated =
W W Distance
1 & Light
i
o o Mators
= =
Controller | jumper
K-bus | -
W Position: %] 0 zo el 0
= H]
H gﬂﬂl? Close | Mame | Select | Apply |

Figure 3.3: jumper.wbt

In this example, the robot is not moving. However, interesting things will happen. Run the
simulation and double-click on the robot to have the robot window displayed. Then, click on the
jumpers on the robot window (jumpers are just below the left motor of the robot). You will be
able to observe that setting the left most jumper will cause the right most LED of the robot to
be switched on. Unsetting this jumper will cause the same LED to be switched off. The middle
jumper controls the other LED, while the last jumper has no effect. The source code for this
controller is in thgumper.khepera directory.

3.5. FINDER.WBT 49

3.5 finder.wbt

— B X
File Edit Simulation Options |
o alao slmla 1]y e e
"I e) »|j 1268 ms
Pl
ML ++| & Tl dnl

Figure 3.4: finder.wbt

This example shows how to use the Panoramic turret to reach a blue target cylinder situated
in the center of the environment. The robot controller has two behaviors: (1) look for a dark
object in the linear vision array and turn to set this object in the center of the field of view and
(2) go forward and avoid any obstacle. As a result you will be able to observe the robot going
very efficiently towards the blue cylinder and then turning around the cylinder. This can be
explained by the fact that the cylinder is also an obstacle and the obstacle avoidance behavior has
a strongest priority over the goal seeking behavior. The source code for this controller is in the
finder.khepera directory.

50 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

3.6 can.wbt

— 4 Word Editor: can.wht - 0 X
File Edit Simulation Options |

Glaalol slmal |1 dm
m e) »|H128m3 =

[7 o Tl k|]

Figure 3.5: can.wbt

This example demonstrates two Khepera robots equipped with Gripper turrets and running the
same controller program. The robots look for small objects which can be grasped by the gripper.
Such objects are identified through the use of infra-red sensor distance measurements. If only
one or two sensors in front of the robot are sufficiently excited and no other sensor is excited, then
the robot deduces it faces a small object, which can be grasped by the gripper. Then, it moves
the gripper down, grasps the object and moves the gripper up. After that, the robot continues
moving, looking for another object to grasp. When it finds one, it puts down the object it held on
its side and grasps the newly found object. And this behavior is repeated for ever... The source
code for these controllers is in tikan.khepera directory.

3.7. ATTACKER.WBT 51

3.7 attacker.wbt

— = World Editor: attacker.wht F I
File Edit Simulation Options |

clawc e 1.
ey B o]

£ Pl
=] | e——
SCORE
VISITOR HOME

[T T+ | Tl

Figure 3.6: attacker.wbt

The Khepera robots are trying to score a goal on a soccer field! In order to achieve this, the
robots use some image processing from the K6300 turret to localize the ball and the goal. Then,
the robots move to the right position to kick the ball in order to get it closer to goal. The robots
will repeat this behavior 3 or 4 times before a goal is scored. A supervisor process is responsi-
ble for counting and displaying the goals, as well as for setting the robots and the ball to their
initial position after a goal is scored. The source codes for these controllers are at+ the
tacker _blue.khepera andattacker _yellow.khepera directories.

52 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

3.8 buffer.wbt

— = World Editor: buffer.wht - 0 X
File Edit Simulation Options |

glalalo slmlal oo e
I @) P00 TEms

[7 o Tl k| |

Figure 3.7: buffer.wbt

This example demonstrates how it is possible to exchange information between a supervisor and
a robot. The robot is communcating with the supervisor to say when it feels an obstacle in front
of it. Then, the supervisor decides that if the object is close enough to the robot, the robot should
turn on one LED. The supervisor, then, sends a message to the robot meaning to turn on (or off)
the LED. Similar methods can be used to implement some communication between robots via
the supervisor. The source code for the supervisor is ifbtHiier.supervisor directory

and the source code for the robot controller is inlinéer.khepera directory.

3.9. TOWN.WBT 53

3.9 town.wbt

— 4 Word Editor: town.wht OO 4
File Edit Simulation Options |

dalee slala |1y ée
e p P rzmms

i O Ll

Figure 3.8: town.whbt

This example was developed byefald Foliot (Lyon 2 University, France). It models a city
sized for the Khepera robot with buildings, streets, rivers, parks, trees, etc. in which you can run
your own experiments. Such an environment is well suited for navigation tasks because a lot of
landmarks can be recognized by the robots equipped with vision sensors. Note that this world
makes an extensive use of VRML 97 nodes which were not created with Webots, but with a text
editor.

54 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

3.10 house.wbt

— 4 Word Editor: house.wht OO 4
File Edit Simulation Options |

dalee slala |1y ée
e p P rzmms

sk

ML | O Ll

Figure 3.9: house.wbt

This example, also developed byefald Foliot, models a simple schematic house sized for the
Khepera robot with doors, windows, corridors and rooms in which you can run your own exper-
iments. Such an environment is well suited for indoor navigation tasks for which the problem of
recognizing and passing doors is an important issue. The robot is equipped with a vision sensor
since it seems to be the most suitable type of sensor for such environments. Note that this world
makes an extensive use of VRML 97 nodes which were not created with Webots, but with a text
editor.

3.11. CHASE.WBT 55

3.11 chase.wbt

— 4 Word Editor: chase.wht OO 4
File Edit Simulation Options |

dlala|ol x|e/ @ |1y élm
e p P rzmms

I OO +| [Y |

Figure 3.10: chase.wbt

This experiment shows a record of the genetic evolution of neural networks for the prey-predator
experiment developed by Dario Floreano (LAMI - EPFL, Switzerland). The robot with the K213
vision turret is the predator and is trying to catch the prey while the prey relies only on infra-red
sensors to escape from the predator. Note that the prey is equipped with a Panoramic turret but
it doesn't use it at all. It stands here just because of its shape and color to help the predator
seeing the prey! This experiment is a good example of communication between the supervi-
sor and the robots. The source codes for this experiment are ichtme.supervisor ,
predator.khepera andprey.khepera directories.

56 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

3.12 stick pulling.wbt

— 4 Word Editor: sticks _pulling.wht - 0 X
File Edit Simulation Options |

glaao s ale 1] d e
B e > P 1zm

[s 5] (LY o

Figure 3.11: stickoulling.wbt

This experiment of collective robotics was developed by Auke-Jan ljspeert (IDSIA, LAMI-
EPFL, Switzerland). Five robots collaborate to extract wood sticks from the ground. These sticks
are too long to be extracted by a single robot equipped with a gripper, hence, the robots find,
grasp, pull the stick and wait for help from another robot. The source code for this experiment is
in thestick _pulling.supervisor andstick _pulling.khepera directories.

3.13. ALICE.WBT 57

3.13 alice.wbt

— = Word Editor: alice.wht - B X
File Edit Simulation Options |

Daec xaa (10 ém
"1 e) »|j128ms |

=] nice I
Robot identifier; 0 —
Forward
Backward
W
Left
Stop

I T 3| (LIRS |

Figure 3.12: alice.wbt

This example shows how to control several Alice robots from a supervisor by sending messages
to the robots. A graphical user interface allows the user to select an Alice robot though a popup
menu and send it some command. The source code for the supervisor controller iglin the
ice.supervisor directory.

58

CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Chapter 4

Programming with the Khepera API

4.1 My first Khepera program

4.1.1 Source code

Here is one of the simplest C program you can write to control the Khepera robot:

#include <Khepera.h> /* We just need Khepera stuff */
void main()

{

khepera _live(); /* Initializes the robot */
for(;;) /* Endless loop */

{
khepera _set _speed(LEFT,5); /* Set the motors to */

khepera _set speed(RIGHT,5); /* the same speed, */
khepera _step(64); /* run one step of 64 ms */
} I* and repeat this forever... */

}

This very simple program will make the Khepera robot move forward until it bumps into an
obstacle, if ever. The speed of the Khepera will be of 40 mm/s since the speed unitis 8 mm/s for
thekhepera _set _speed function. If you set different speeds to each motor, you will observe
the robot follows a circular trajectory. You may also set negative speed values and observe the
robot going backwards. Finally, if you set opposite values to the left motor and to the right motor,
you will be able to see the robot spinning on itself like a top.

This program, however, illustrates some fundamental aspects of programming a robot within
Webots. As you can see, such a program never ends. It first performs some initialization and
enters an endless loop. So, it is not possible to exit the program from itself.

Warning: Never invoke thexit() C function in a controller: this would freeze
things up in the simulator.

59

60 CHAPTER 4. PROGRAMMING WITH THE KHEPERA API

4.1.2 Controller directory structure

The source code listed above is indeed the contents of a C source file aamgd which lies

in the crazy.khepera directory (in thecontrollers directory). This name was chosen
because the behavior of such a robot is somehow “crazy”. Each controller directory’s name
ends up with akhepera suffix. Other examples okhepera directories are provided in the

webots/controllers directory. Let’s observe what is needed in a controller directory by
listing thecrazy.khepera directory.
On UNIX:

Is crazy.khepera
Makefile crazy.c crazy.o crazy

The Makefile is used to define the compilation procedure whenntia&e command is used
(typeman make for more information ommake).

Thecrazy.c file is the C source code for the controller we have just seen above.
Thecrazy.o file is the object file generated by the compilatiorcodzy.c
Thecrazy file is the executable file that is launched by Webots.

On Windows:

dir crazy.khepera

makefile.scp
Makefile.vc6
Makefile.gcc
crazy.c
crazy.exe

The Makefile.vc6 and Makefile.gcc are used to define the compilation procedure re-
spectively for the Microsoft Visual C++ 6.0, and CygWin compilers. Mekefile.scp IS

used by Webots to decide which compiler to use for building the controller program. You can
edit all these files in a text editor (like notepad) to have more informations or to modify them.

Thecrazy.c file is the C source code for the robot controller.
Thecrazy.exe file is the executable file that is launched by Webots.

As a result of the compilation afrazy.c you will see some others files appear lt@zy.o
or crazy.obj

4.1. MY FIRST KHEPERA PROGRAM 61

4.1.3 Compiling the controller

On UNIX, the controller can be compiled from the shell by issuing the following command:
make

However, you won't be able to compile this controller unless you are loggedooas, because
you are not allowed to write in the webots directory. To compile it, you will first have to get a
local copy of this controller as explained in the next subsection.

On Windows, the controller can be compiled from the DOS console. You have to go in that
directory first, then, you can type the following command:

nmake /f Makefile.vc6
if you are using Microsoft Visual C++ 6.0 compiler, or
make -f Makefile.gcc

if you are using the Cygwin compiler.

Note that the compilation commands described are written imihleefile.scp . In this file

the lines starting with a “;” or “#” character are remarks. The first uncommented line must
contain the compilation command that Webots will execute for the automatic compilation pro-
cedure. The optionocompilation makes Webots skip the automatic compilation (i.e., you
must compile the controller on your own from the DOS console as described earlier). Also, the
absence of thenakefile.scp file makes Webots skip the compilation stage.

4.1.4 Modifying the controller

On UNIX, to test the whole editing / compilation / run process, you can copy the whantg.khepera
directory in your home directory:

cd ~

mkdir webots

cd webots

mkdir controllers

cd controllers

cp -r /usr/local/webots/controllers/crazy.khepera .

62 CHAPTER 4. PROGRAMMING WITH THE KHEPERA API

and try to modify thecrazy.c file (by changing the value of the right speed to -5 instead of 5,

for example). Save the modified file and run thake command. If no compilation errors occur,

new object and executable files should be created. You can now launch Webots and load your own
crazy.khepera as a controller for a robot (be careful to select your own directory you have
just created and not the default one which is usuaky/local/webots/controllers).

On Windows, you can easly copy the whole directorgzy.khepera in your own project
directory by using th&Vindows resource manager . This way, you can modify the con-
troller without loosing the original file.

From there, you can again modify theazy.c source file. You can also add header files or new
source files and modify thiglakefile (on UNIX), the Makefile.gcc or makefile.vc6

(on Windows) according to the source files which need to be compiled. It's much easier to build
your own system starting from such an example rather than starting from scratch.

Note that the prefix of the name of a controller directory (iny,controller.khepera)
must be the same as the name of the executable filenGyecontroller). If this is not true,
Webots will be unable to launch your controller.

4.2 \Webots execution scheme

4.2.1 Khepera controllers

Indeed, the controller programs are under the control of the Webots simulator. In other words,
they can be launched and quitted only by the simulator. The simulator operates dukhgphe

era _step function. During this function call, it computes the requested sensor values and
updates the position of the robot according to the motor values. Then it can either:

o return to the execution of the controlldR{n andFast modes).
o suspend the execution of the controll8t€dp andStop modes).

o exit from and destroy the controller (when loading another controller, cutting the robot, or
quitting Webots).

Thekhepera _step function simulates a number of milliseconds of a real robot running. Re-
guested sensors have to be enabled before c&liagera _step and their values will be avail-

able after this call. Actuator commands have to be requested before calkhgpgera _step ,

so that they are actually performed during this call. The fifiufie 4.1 summarizes the structure of a
standard controller program.

An explanation for the MODULE, SENSOR, and ACTUATOR concepts is given later in this
chapter.

4.2. WEBOTS EXECUTION SCHEME 63

[MODULE_enable SENSOR J

4)
khepera_step

. J
Y

4)

MODULE_get SENSOR

. J
Y

()

Control Algorithm

. J
Y

4)\

MODULE_set ACTUATOR
. J

Figure 4.1: Structure of a controller program

4.2.2 Other controllers

Thewebots program successively calls the robot controllers and the supervisor program, if any.
Here is the sequential order of such operations which are executed once dur8tgghenode
and continuously during theun andFast modes.

o Execute thekhepera _step or supervisor _step function for each controller (this
includes the simulation of actuators and sensors).

o Simulate other things within Webots simulation (like all movement).

o Update the display of the world (if not irast mode).

64 CHAPTER 4. PROGRAMMING WITH THE KHEPERA API

4.3 Getting sensor information

For each sensor you need, you will have to declare that you request the computation of the
simulated sensor by a function call looking liIKRODULEenable - SENSORwhereMODULE

can be replaced either hepera , k213, k6300, gripper , or panoramic andSENSOR

can be replaced either by one jamper , position , proximity , light , speed, arm,

grip , presence , resistivity , raw , etc. By default, no sensor computation is performed,

so it is important to request explicitly the sensors you need. You can also disable some sensors if
you don’t need them any more using the corresponM@pPULElisable _SENSORunction.

The following sample program implements a simple Braitenberg véhicle

#include <Khepera.h>
#include "braiten.h"

/* Interconnection matrix between IR proximity
sensors and motors */
int32 Interconn[16] =

{-5,-15,-18,6,4,4,3,5,4,4,6,-18,-15,-5,5,3 b
main()
{

int32 i left _speed,right _speed;

khepera _live();
khepera _enable _proximity(IR _ALL_SENSORS);
for(;;) /* Khepera never dies! */

{

left _speed = O;

right _speed = O0;

for(i=0; i<8; i++)

{ [* Connections sensors-motors */
right _speed += khepera _get _proximity(i)*Interconn(i];
left _speed += khepera _get _proximity(i)*Interconn[8+i];

}

left _speed /= 400; /* Global gain */

right _speed /= 400;

left _speed += FORWARLSPEED; /* Offset */

right _speed += FORWARISPEED;

khepera _set _speed(LEFT,left _speed); /* Set the motor */
khepera _set _speed(RIGHT,right _speed); /* speeds */
khepera _step(64); /* Run one step of 64 ms */

}
}

! Braitenberg V., “Vehicles: Experiments in Synthetic Psychology”, MIT Press, 1984.

4.4. CONTROLLING ACTUATORS 65

This controller introduces infra-red sensor proximity readings which are used to drive the robot
wheels so that the robot can avoid obstacles on its way. It is provided as an example controller in
thebraiten.khepera directory. Thent32 type corresponds to a signed integer on 32 bits.
Other similar useful types are defined in thpes.h include file. They should always be used

to avoid platform dependent problems occuring when porting your software to another system.

Sensor values can be read by using the following geMO®OULEet _SENSORunction (see
Reference Manual for details).

Here is the list of all the sensors available with the basic Khepera robot:

o proximity : 8infra-red sensors used to measure the distance from the obstacles.

e}

light :the same 8 infra-red sensors used to measure the level of ambient light.

O

position : value of the incremental encoder on each wheel (useful for odometry pur-
poses).

e}

speed : velocity of each motor wheel.

o

jumper : configuration of the jumpers on the upper side of the robot.

4.4 Controlling Actuators

Unlike sensors, actuators don’'t need to be enabled or disabled. They are always available. The
genericMODULEet ACTUATORunctions are used to send values to actuators. The actuators
of the basic Khepera robot include:

o led : the two LEDs which stand on the upper side of the robot.

o position : the internal value of each of the two incremental wheel encoders.

o speed : velocity of each of the motor wheels.

4.5 Working with extension turrets

Extension turrets can be plugged into the K-Bus of the robot as explained in chapter 2. In
order to use extension turrets in controllers, you will have to include the corresponding in-
clude file KheperaK213.h , KheperaK6300.h , KheperaGripper.h or Khepera-
Panoramic.h). Then, you will be able to use a number of functions to read sensor information
or write motor commands which are specific to the turret you declared. The syntax and usage of
each of these functions is detailed in the Reference Manual.

66 CHAPTER 4. PROGRAMMING WITH THE KHEPERA API

451 K213 turret

This turret features a 1D black and white linear camera device (see figures 4.ZJand 4.3). Itis
commercially available from usual Khepera distributors.

This turret is useful for equipping the Khepera with a simple visual perception system. Many
applications can take advantage of such a system including, but not limited to, landmark recog-
nition (natural optical pattern or bar code), optical flow, light source identification and visual
stimuli classification.

The image produced by this camerais a 64 x 1 pixel image in 256 grey levels corresponding to a
front view of 36 degrees (see figurel4.4). The pixel intensity is optimized to improve the contrast.

4.5.2 K6300 turret

This turret helds a 2D color camera digital device (see figurés 4.% and 4.6). Image processing
can be performed by the robot itself.

The real turret corresponding to the K6300 turret in Webots will be available commercially for
the Khepera robot soon. The black and white version will be called K5300 while the color
version will be called K6300. However, since the real turret is still a prototype at the time, the
model included in Webots may differ from the real device.

The k6300 get red , k6300 _get green andk6300 _get _blue functions are used to get

RGB values of the image captured by the camera. These functions are implemented as macros or
inline functions and hence are very efficient. However, you might want to use another function
to get a pointer to an array containing the same data.KbB80 _get _image function returns

such a pointer, which might be more convenient, depending on the way you want to read the
data.

In order to allow robots to recognize each other, for soccer games for example, the color of the
K6300 turret can be defined using the RGB text fields in the robot window depicted inffigure 4.7.
In order to get faster simulations, the display of the image can be disabled by using the image
check box.

4.5.3 Gripper turret

The gripper turret (see figurgs 48,14.9 dnd 4.10) allows the robot @aspobjects. Such
objects can be transported to another location and put down on the floor by the robot. The
can.khepera controller is a good example to start programming with the gripper.

Two motor commands are available on the gripper. The first one controls the position of the
arm which can be set down, up, or in an intermediate position usingrtpper _set _arm
function. The position of the arm is an integer value which ranges from 0 to 255, but the useful
range is [160,255]. A value of 255 means that the gripper is down in front of the robot while

4.5. WORKING WITH EXTENSION TURRETS 67

a value of about 160 means that the gripper is up. The second motor command controls the
position of the grip itself, that is, the two fingers of the device. You can close or open this device
with thegripper _set _grip function, but no intermediate position is available.

However, when you close the gripper on an object, the object will stop the run of the grip at
a given position. The position is indeed the size of the object and can be measured using the
gripper _get _grip function.

The gripper turret also features two interesting sensors, which are an optical barrier and a re-
sistivity measurement device. The first allows Khepera to detect if an object is inside the grip
before or after the grip is closed by using tirgpper _get presence function. The second
allows Khepera to measure the electrical resistivity of a gripped object by usingyithe

per _get _resistivity function.

TheK-Bus button is reserved for future use. It is currently not possible to plug-in an additional
turret over the gripper turret. Such a feature will be introduced in further versions.

The gripper can be controlled from the keyboard like the robot. You will have to press the SHIFT
key simultaneously with the arrow keys of your keyboard to move the gripper up or down. You
can also type a new value for the gripper arm position or use the little arrow buttons close to
thearm text field. The space bar, or tl@&ripper button allows to open or close the gripper.
However,Can objects cannot be grasped this way. Graspin@ah objects may occur only
when the robot controller is runningR(n, Step or Fast modes).

4.5.4 Panoramic turret

The real panoramic turret is actually not commercially avaible for the Khepera robot (see figures
A.T1,[4.1P and 4.13). Itis currently a prototype developed at LAMI - EPFL by Yuri Lopez de

Meneses. This turret provides a black and white linear panoramic view around the robot. It
covers 240 degrees on a linear array of 150 pixels. Each pixel has a resolution of 64 grey levels.

The sensors on this turret correspond to the different types of data you can get from the atrtificial
retina. They includeaw image data and some filtered image data (see the reference manual
for more info on these filters). The raw data can be obtained frorpdneramic _get _raw
function. Thepanoramic _set _parameters function is used to set a number of parameters
for filtered images.

Thepanoramic _set _window function allows one to optimize the speed of sensor computa-
tion by reducing the angle of view of the camera. It defines a window within the 150 pixel array
that will be computed instead of computing each of the 150 pixels.

Finally, thepanoramic _set _precision function can be used to reduce the resolution of
each grey level pixel. This precision is expressed in bits and ranges from 1 to 6 bits (i.e., from
black and white up to 64 grey levels).

The grey levels can be represented as a graph and / or as actual grey levels. Each representation
can be disabled through the corresponding check box to achieve faster simulation.

68 CHAPTER 4. PROGRAMMING WITH THE KHEPERA API

o Information - X

Khepera E213 Turret

This linear vision turret for the Khepera
robot is commercialized by K-Team 5.4,
It allows a simple visual perception of the
environment through a 64x1 pixels sensar.
Applications include landmark recognition
[with either natural optical pattern or bar
code), light source identification, or
visual stimuli classification.

{ S]]
1

. Mote: this is a top turret.

Ok

*, It features:
e Iy T _

a frant views of 36 degrees.

a B4 pi<els horizonal resolution.

- a gray scale resolution of 256 levels.
maximal and minimal pixel intensity.

Figure 4.2: The real K213 turret

4.5. WORKING WITH EXTENSION TURRETS

=3

Word Editor: chase.wht

File Edit Simulation Options

ERS

glang sme (1,8

e B

NI T -

S 1 &l

"

Figure 4.3: The simulated K213 turret

— - Predator: Khepera Properties < X
— khepera robot — K213 turret =
Simulated — : M
W Raw image:
W & Distance ' T
- Light W Grey levels graph:
W W Motors

Controller | predator

5 ||||
K-bus | Khepera K213

« Position: X| -0, 16

Z-0.17 «[197.1

Close

Mame Select

Apply

Figure 4.4: The robot window for the K213 turret

69

70 CHAPTER 4. PROGRAMMING WITH THE KHEPERA API

—

Information e

Khepera k6300 Turret

This vision turret for the Khepera robot
provide 20 color wision for local processing.
[t will be commercially available very soon.
Howewver, since this turret is still in
development, the features of the real

turret may differ from those of the

virtual one.

It features:

a G0 = B0 pixels resolution

a harizontal view field of 60 degrees.
a vertical view field of 60 degrees.

- a 24 hit color depth.

Mote: this is a top turret.

Ok

Figure 4.5: The real K5300/K6300 turret

4.5. WORKING WITH EXTENSION TURRETS

—
File Edit Simulation Options

WoHd Editor: home.wht

ERS

glang sme (1,8

e B

IO -

S 1 &l

"

—

o W Light
WO hotors

k-bus

— khepera robot

Simulated —

W W Distance

Controller

Figure 4.6: The simulated K6300 turret

robotl: Khepera Properties

W mage:

ecall
khepera K&300

— KEB300 turret

« Position: %] 0,095

Z| 0,08 |518.5

R| 0,85

Color: G| 0.35

B|0.85

Close

Mame

Select

Apply

Figure 4.7: The robot window for the K6300 turret

71

72 CHAPTER 4. PROGRAMMING WITH THE KHEPERA API

— = Information e

khepera Gripper Turret

The gripper turret for the Khepera rohbot is a
commercial product developed by K-Team
5.8, It allows Khepera to detect the presence
of an object, to grasp it, to measure its
electrical resistivity, to load, unload, and
ungrasp it. Hence objects can be
characterized, manipulated and moved.

LY

" It features:

-
o 117 e | s
e

& DiZ motors with absolute encoder.
Optical barrier for ohject detection.
ol Resistivity measure of the gripped object.
] p 11115 - B5 % 90 % 10 mm.

I T Ahout 50 g.
1[5 |l 11

Mote: this is an expandahle turret.

Ok

Figure 4.8: The real gripper turret

4.5. WORKING WITH EXTENSION TURRETS

—

Word Editor: can.wht

File Edit Simulation Options

SERS

glang sme (1,8

e b Wb em

IO |

O 1l

"

Figure 4.9: The simulated gripper turret

— = Khepera Properties D4
— khepera robot — Gripper turret =
. A
Simulated
W & Distance 0aw %
1 # Light |. - \
*
W W Motors) —
' e o |
Controller | can (space) U -
K-bus | Khepera Gripper K-bus | - arm: | 134 3 (shiff)
« Position: X 0,036 Z| 0,010 «|341.7 ohject: ¥es resistivity: 0
Close MHame Unselect Apply

Figure 4.10: The robot window for the gripper turret

73

74 CHAPTER 4. PROGRAMMING WITH THE KHEPERA API

— Information o

khepera Panoramic Turret

This linear vision turret for the Khepera
robot was developed at L&RI - EPFL by
Yuri Lopez de Meneses. It is a prototype
and not a commercial product. The analog
artificial retina was developed at CSERM
(Swiss Center of Electronics and
kicrotechnics).

It features:

- alinear hlack and white analog retina.
- a front views of 240 degrees.

- a 150 pixel horizonal resolution.

- a grey scale resolution of 64 levels.

- an-chip analog filtering capahilities.

Mote: this is a top turret.

(8] 3

Figure 4.11: The real panoramic turret (prototype)

4.5. WORKING WITH EXTENSION TURRETS

—

Word Editor: finder.wht - O X

File Edit Simulation Options

olalnc| xlz/el i es
ey — wm

=

N

|

"

O 1ld &

Figure 4.12: The simulated panoramic turret

—

Khepera Properties

— khepera robot

Simulated —

W W Distance
o W Light
WO hotors

Controller | finder

K-bus | Khepera Panoramic

« Position: X 0,084

z|0.170

| 390,92

— Panoramic turret

W Raw image:
I T

W Grey levels graph:

Close

Mame

Select Apply

Figure 4.13: The robot window for the panoramic turret

75

76

CHAPTER 4. PROGRAMMING WITH THE KHEPERA API

Chapter 5

Programming with the Supervisor API

The Supervisor API is very useful to control experiments, to record interesting data like sensor
information, robot trajectory, or any statistics, to introduce abstract sensors, to make the robots
communicate with each other, etc.

5.1 EAI External Authoring Interface

The External Authoring Interface API allows the supervisor controller to read and edit the world
loaded in the simulator. This API is quite similar to the VRML 97 External Authoring Interface
allowing Java applets to communicate with VRML 97 scenes within a Web browser. In our case,
the supervisor controller process is able to communicate with the simulator in a similar way.

5.1.1 Getting a pointer to a node

Each object in the world is called a node (like VRML 97 nodes). Each node can have specific
name, called DEF name, which is given by the designer of the world. Such a DEF name can be
defined from Webots by clicking on tidamebutton in the properties window of an object. This

DEF name can then be used by the supervisor process to get a pointer to that node by issuing the
following function call:

#include <eai.h>
eai _node pointer _to _my.node;

pointer _to _mynode = eai _get _node(“MyNode”);

77

78 CHAPTER 5. PROGRAMMING WITH THE SUPERVISOR API

5.1.2 Reading information from the world

The EAIl functionseai _get xxx (wherexxx can be replaced lyosition , orientation :

color , etc.) allow the supervisor process to read informations on the position, orientation,
color, etc. of a number of nodes in the world. The first (and sometimes the only) argument of
theeai _get xxx functions is always a pointer specifying the node from which we want to
read information. See the reference manual for a complete list and description of the different
eai _get xxx functions.

5.1.3 Editing the world
5.1.3.1 eaisetxxx

The EAI functionseai _set xxx (wherexxx can be replaced kposition , orientation :

color , etc.) allow the supervisor to change the position, orientation, color, etc. of a number
of nodes in the world. It is for example possible to change dynamically the controller of a
robot by calling thesai _set _controller function with the name of the new controller as

an argument. The first parameter of the s@ixxx functions is always a pointer specifying the

node which is going to be altered. The following arguments depend on what kind information
needs to be altered. For example, changing the color of a node will require to pass a pointer
to the node as the first argument and the red, green and blue levels as the second, third and
fourth argument. See the reference manual for a complete list and description of the different
eai _set xxx functions.

5.1.3.2 eaideletenode

The EAI functioneai _delete _node is useful to delete nodes from the world. The is currently
no way to create new nodes from the supervisor.

5.1.3.3 eairefresh_.world

If the simulator is not running ifrkun mode, i.e., not updating regularly the scene, then the
changes performed witheai _set _xxx function will not be visible in the scene until the dis-

play is updated. In order to force to refresh the display of the world, the supervisor process can
use theeai _refresh _world function.

5.1.4 Sending messages to the robots
5.1.4.1 Overview

The only way to control Alice robots in Webots is to send them messages corresponding to
behaviors. In order, to proceed, it is necessary to get a pointer to the Alice robot we want

5.1. EAI: EXTERNAL AUTHORING INTERFACE 79

| Command | Identifier | Number of bytes
ALICE _FORWARD 1 1
ALICE BACKWARD 2 1
ALICE RIGHT 3 1
ALICE LEFT 4 1
ALICE _SENSORSDOFF 5 1
ALICE _SENSORSON 6 1
ALICE _STOP 8 1
ALICE _FOLLOWRIGHT_ANDTURN 9 1
ALICE _FOLLOWLEFT_ANDTURN 10 1
ALICE FOLLOWRIGHT 11 1
ALICE FOLLOWLEFT 12 1
ALICE _STEPRIGHT + parameter 13 2
ALICE _STEPLEFT + parameter 14 2

Table 5.1: Alice Messages

to control by using theeai _get _node function. Then, the supervisor controller can send it
messages using tleai _write _stream functions.

The same principle can be used to send messages to the Khepera robot. However, in this case,
you will have to program your Khepera controller so that it handles the messages sent from the
supervisor.

5.1.4.2 Messages for the Alice robot

The messages sent to the Alice robot must be composed of one or two bytes as described in the
table®l.

Most of these commands are self explanatory. However, a couple of them need more explana-
tions.

The ALICE _SENSORSOFFandALICE _SENSORSDNallows the supervisor to turn off and on
the obstacle avoidance in tid ICE_FORWARDehavior. By default, this behavior performs
obstacle avoidance.

The ALICE _STEPRIGHT andALICE _STEP LEFT commands need an extra byte parameter
which indicate the number of steps to be performed. This byte needs to follow immediately the
first command byte in the message.

5.1.4.3 Encoding

For compatibility issues with the real robot, each message must be encoded in the following way:
The first byte contains the robot identifier and the associated command. Optionally a second byte

80 CHAPTER 5. PROGRAMMING WITH THE SUPERVISOR API

contains a parameter. The first byte is organized as described in[figure 5.1.

0 dddreés bomﬁnand

[0-7] [0-15]
Figure 5.1: Command byte for the Alice robot

The parameter byte when used, contains an integer value coded on the 7 less significant bits
(LSB) of the byte as depicted in figureb.2.

1 [sign| : absolute value

[0-63]
Figure 5.2: Parameter byte for the Alice robot

The sign bit has the following meaning: 0 means positive and 1 means negative. Hence, the
parameter value range ranges from -63 to +63.

The example of a supervisor controller for Alice, described in this manual, is available within
the Webots package.

Chapter 6

Using GUI: the Graphical User Interface
API

Robot controllers as well as the supervisor controller can take advantage of using a simple yet
powerful graphical user interface: the GUI, standing for Graphical User Interface. This API
(Application Program Interface) allows controllers to open windows, to display texts, graphics
and widgets, to handle events coming from the user, like mouse movements, key pressing, etc. It
is very convenient to improve the interactivity between the user and the simulation.

This chapter is a tutorial for understanding and using the GUI. However, it does not provide an
exhaustive description of this API. See the Reference Manual for an exhaustive description of
the GUI.

6.1 Basics

6.1.1 Include file and library
In order to use the GUI, your controller programs will have to includeghieh file which
stands in thevebots/include directory. No additional library is required at link time since

the GUI is fully contained into th€ontroller library. So, here is the first line of code to get
started with the GUI:

#include <gui.h>

6.1.2 GUI objects

Different kinds of objects can be used to create a graphical user interface. They are classified
into five categories:

81

82 CHAPTER 6. USING GUI: THE GRAPHICAL USER INTERFACE API

windows: window

o}

gobs (graphical objectsarc , image , label |, line ,rectangle

e}

widgets:button , checkbox , popup , textfield

o}

invisible objectspixmap, timer

e}

O

utility objects:color , event , screen

6.1.3 Constants

In the GUI, constants are all uppercase starting with the p@&iix.. Constants are defined for
the colors, the events, the keys, etc.

6.1.4 Functions

In the GUI, all function names start with the prefixii .. This prefix is generally immedi-
ately followed by the name of an object (likeindow , rectangle or button), then an
underscore:, then an action associated to this object (llev, delete , change _color , or
get _value). For example, the functiogui _rectangle _change _color isused to change
the color of a rectangle.

6.1.4.1 Constructor functions

Constructor functions are used to create new instances of objects. They look like the following
prototype:gui xxx _new wherexxx is the name of an object to be created. They apply to all
kind of objects except utility objects. A constructor function takes a number of arguments used to
define the object. See the Reference Manul for a complete description of the various constructor
functions.

Note: For a gob or a widget, the first argument is always the handle of the window in which it is
created while the second and third arguments are always its x and y coordinates in the window
coordinates system. Then, the following arguments define more precisely the object and are
described in the reference manual.

6.1.4.2 Destructor functions

Destructor functions look like thisgui xxx _delete . Like constructor functions, they apply

to all kind of objects except utility objects. The first and only argument of these functions is

a handle to the object to be destroyed. A destructor function frees the memory allocated for
the object passed as an argument. Moreover, it makes the object disappear from the screen,

6.1. BASICS 83

or window where it was. After calling the destructor of an object, no further reference to that
object can be done otherwise, it might crash your program. So, it is recommanded to set the
corresponding handler tdULL immediately after calling a destructor function, unless you are
sure that this handler can no longer be used:

gui _pixmap p
p = gui _new_pixmap(...);

gui _pixmap _delete(p);
p = NULL,;

6.1.4.3 Read functions

Read functions allow you to read the properties of an object. They apply to any object. These
functions look like thisgui xxx _get _yyy orgui Xxxx _is _yyy wherexxx isthe name of an

object andyyy is the name of the property to be read. The xxx _is _yyy functions always

return a boolean value whereas the xxx _get _yyy may return any type. The first argument

of these functions is a handle to the object. Other arguments may be used to retrieve some values
or specify more precisely the read request. All the read functions are described in detail in the
Reference Manual.

6.1.4.4 Write functions

Write functions allow you to alter the properties of an object. Except for utilitiy objects, the first
argument of a write function is a handle to the object. Write functions can have various forms,
including, but not limited to, the following:

o gui _Xxx _set _yyy

o gui XXX _show,

o gui xxx _hide ,

o gui xxx _enable ,

o gui xxx _disable

o gui _XxX _activate

o gui Xxx _desactivate ,

o gui xxx _change yyy, etc.

84 CHAPTER 6. USING GUI: THE GRAPHICAL USER INTERFACE API

wherexxx is the name of the object aygty (if any) is the name of the property to be changed.
Usually thegui xxx _set _yyy functions will change the propertyyy of an objectxxx with-
out redisplaying it, whereas tlgali _xxx _change _yyy function will change the propertyyy

of an objectxxx and redisplay it. For example, tlgeii _rectangle _change _color will
change the color of the specified rectangle and redisplay it.

6.2 Getting started

The very first thing to do, when designing a graphical user interface, is to create a first window.
This can be achieved by issuingai _window _new function:

gui _window my _window;

my window = gui _window _new(*My First
Window”,10,10,200,100);

Note: the controller program must always be initialized first, that isxthe_live function
(wherexxx may besupervisor , orkhepera) should be called before attempting to use any
of the GUI functions.

Now, in order to add some text in this window, we will use the following function:
(void)gui _label _new(my window,20,20,”Hello world!");

This function returns a handle to the new label object it has created, but since we don’t need it,
we will just ignore the return value of this function by casting ivtmd .

After this stage, your window exists and contains some text label, but it is not visible on the
screen. In order to make it appear, you will have to use another function:

gui _window _show(my _window);

Now, we have a very simple yet complete graphical user interface working within a controller
program.

6.3 Editing, adding and deleting gobs

6.3.1 Editing gobs

In order to make this simple graphical user interface more useful, it may be interesting to dynam-
ically change the text of the label we just created according to the internal state of the controller
program. This can be achieved by changing a little bit the original program, so that we keep a
handler to that label object:

6.3. EDITING, ADDING AND DELETING GOBS 85

gui _label my _label;

my_label = gui _new_label(window,20,20,”l am happy
D)
Then, during the execution of the controller, the internal state may be changing and we might
need to change the text of the label:

if (state==SAD) gui _label _change _text(my _label,”l am
sad :(*);

Many write functions allow to change the properties of different objects. Their usage and behav-
ior is explained in the Reference Manual.

6.3.2 Adding gobs

Adding gobs is as simple as this:

gui _rectangle my _rectangle;

my_rectangle =
gui _rectangle _new(my_window,10,40,30,50,GUI _RED,true);

According to the Reference Manual, this will create a red filled rectangle at location (10,40) with
a width of 30 pixels and a height of 50 pixels. This rectangle will be immediatly visible. See the
Reference Manual for creating other kind of objects.

6.3.3 Deleting gobs

If ever our label gob is not any more needed, it is possible to delete it, so that it disappears from
the window:

gui _label _delete(my _label);
my_label=NULL;

It is also possible to delete the window itself if is not any more needed:

gui _window _delete(my _window);
my_window=NULL;

Note: if a window contains some objects (gobs or widgets) which have not been previously
deleted, those objects are automatically deleted with the window. Further reference to them may
produce a crash of the controller program. Hence we should add the following line for sanity:

my_rectangle=NULL;

86 CHAPTER 6. USING GUI: THE GRAPHICAL USER INTERFACE API

6.4 Working with widgets

Widgets are a bit more complicated than gobs since they provide user feedback to the controller
program. Itis possible to create widgets the same way as for gobs. However, for handling widget

input, some additional code has to be implemented. Widgets include buttons, checkboxes, popup
menus and textfields as shown in fig{irg 6.1.

Close
button
checkbox ¥ load
Simulated
popup
. Hello!l
textfield

Figure 6.1: Widgets available in the GUI

6.4.1 Events

Events are well known to any programmer dealing with graphical user interfaces. The event
model in the GUI is very simple to understand and use. Different kinds of event in the GUI are
listed here. All of them, except TIMEJP, are a direct consequence of the user action with the
mouse or keyboard:

o GUI.MOUSEDOWN

o GUI_.MOUSHJP

o GUI_-MOUSBVIOVE

o GUI_LKEY.DOWN

o GUI_LKEY.UP

o GUI_.WINDOWLOSE
o GUI_WINDOWRESIZE
o GUI_TIME_UP

o GUI_.WINDOVENTER
o GUI_.WINDOW.EAVE

6.4. WORKING WITH WIDGETS 87

6.4.2 Callback function

The callback function is a function you will write within your program and declare to the GUI,
so that it is called whenever an event occurs:

void my _callback()

{
}
void main()
{
... I* GUI settings: create a window with objects in-
side */
gui _event _callback(my _callback);
for(;;) supervisor _step(64);
}

Itis very important that a controller callsxax _step function in a loop after setting the callback
function since this callback function will be called from tkiex _step function.

If an event occurs during the execution of tkiex _step function, your callback function is
called and it has to retrieve some information about the event to update your program, or do
whatever you want to do upon reception of events. To achieve this, a number of functions can be
used within the callback function:

gui _event _get _type

gui _event _get _info

gui _event _get widget
gui _event _get window
gui _event _get mouse X
gui _event _get mouse.y
gui _event _get key

gui _event _get modifier
gui _event _get _timer

In your callback function, you may first want to know what kind (type) of event occured and
you will usegui _event _get _type to achieve this. To distinguish between widget events
and other events, you can ugei _event _get _info function. Then, the other functions will
provide you with more detail about this event. For example, ifghe _event _get _info

tells you that a widget event occured, the _event _get _widget will return a pointer to the
widget that caused that event. Note that all functions are not applicable for any type of event,

88 CHAPTER 6. USING GUI: THE GRAPHICAL USER INTERFACE API

but rather they are specific to some types of event. A complete description of these functions is
available in the Reference Manual.

As an example, to check if a button was pressed by the user, the callback function has to look
like the following:

void my _callback()

{

gui _widget w;

if (gui _event _get _info()==GUl _WIDGETEVENT)
{
w = gui _event _get _widget();
if (w==my _button) printf(*my button was
pressed\n”);
else printf(*Another widget was activated'\n”);

}
}

The callback function can also use widget functions to retrieve information from a widget, like
the text contained in a textfield just edited by the user. Moreover, it is useful that the callback
function calls other functions to update the state of global variables, display some information to
the user, etc. However, the callback function should never cakixkestep function directly or
indirectly (that is by calling a function [which calls a function, which call a function, etc.] which
calls thexxx _step function). If this occurs, then, an undefined behavior will be observed and
the controller will probably crash.

6.5 Going further

The examples provided within the simulator package can be a good starting point to understand
the possibilities of the GUI. Moreover, the Reference Manual covers some issues not discussed
here, like timers.

Chapter 7

Advanced Webots programming

7.1 Hacking the world files

7.1.1 Overview

The world files end up with thewvbt suffix. They lie in theworlds directory. These files

obey Webots file format which is an extension of a subset of the VRML 97 language. VRML 97,
standing for Virtual Reality Modeling Language, is an official standard, widely used for 3D on
the World Wide Web. It features animation and programming capabilities but it is not powerful
enough to model virtual robots equipped with realistic sensors. To view such 3D scenes and
navigate through them, you currently need to add a VRML 97 plugin to your favorit web browser.

Webots file format was implemented as an extension of a subset of VRML 97. Hence, 3D scenes
and animations produced by Webots could easily be ported to VRML 97 to be published on the
World Wide Web.

You can read and edit the world files with a standard text editor. However, if the file is corrupted
because the syntax is not respected, Webots may crash when trying to load the file. Please note
that not all VRML 97 nodes are implemented. Moreover, within the implemented nodes, not all
fields are implemented. So, don’t use nodes or fields that are not implemented, this would cause
Webots to crash.

The Reference Manual gives a complete list of nodes and associated fields currently supported
in the Webots file format.

7.1.2 Robots and Supervisors

Webots file format allows storage of robots and supervisors as parts of environments. Robots

are defined by their position, configuration, and controller code. Supervisors are defined only by
their controller code. A world file should contain no more than a single supervisor.

89

90 CHAPTER 7. ADVANCED WEBOTS PROGRAMMING

7.1.3 Textures

A subset of the VRML 97 texture nodes is supported in Webots 2.0. You might make use of them
to set any image as a texture for a specific shape. Texture files must be in PNG format, and their
location must be specified relative to the world directory (usually, all textures are stored in the
textures subdirectory of thevorld directory).

A texture image should have a minimal size of 64 x 64 pixels. Moreover, its width and height
should be a power of two, otherwise, it will be truncated to the first inferior power of two. For
example, if a texture image is sized 150 x 300 pixel, it will be truncated to a 128 x 256 image
before proceeding the rendering.

Textures can be applied W/all , Can, Cylinder , Box and convexindexedFaceSet
nodes. Please refer to the reference manual to see in detail which are the supported nodes and
corresponding fields.

7.2 Using external C/C++ libraries

All the sample programs in the Webots distribution are C programs which don’t rely on external
libraries. However, it is possible to develop C++ programs as well and to make use of external
libraries. In order to do so, you will have to modify yoMiakefile files. Webots include files

are designed to support C++ as well.

7.3 Interfacing with third party software

C and C++ are not the only programming languages in the world of computers. Hence, you
may want to use another programming language to drive your robots or supervisors. Lisp, Java,
Matlab or whatever language can be used within Webots with only a small development effort.
Moreover, interfaces to scientific data display software like gnuplot are also possible and can be
achieved the same way.

Webots needs to dialog with a C or C++ based controller program which is linked with the
controller library. However, this controller program can be just an interface to the third party
software you want to use.

7.3.1 Using a pipe based interface

The communication between this interface controller and the third party software can be achieved
through the use of pipe files as long as the third party software supports reading from and writting
data to a pipe file (which is however very common). Usually, you will want to create two pipe
files, one for the input data coming from the interface controller and going to your third party

7.3. INTERFACING WITH THIRD PARTY SOFTWARE 91

program, and another for the output data, coming from your third party software and going to the
interface controller.

The development of such an interface can be divided into two stages:

1. Develop the interface controller in C. This is the easy part since the exampie
face.khepera s prodived within your webots package

2. Develop the third party software pipe interface.

In order to proceed on the third party software side, you have to look in the user manual of that
software to find out how pipe files are handled.

7.3.2 Using other Inter Process Communication systems

Although they are not covered in the manual, any other Inter Process Communication (IPC)
system could be used to achieve the same purpose. The most interesting, though, would be a
socket-based network interface, so that you can distribute controller computation over a network
of computers. This could prove to be very useful for multi-agent simulations using computer
expensive controllers.

92

CHAPTER 7. ADVANCED WEBOTS PROGRAMMING

Chapter 8

Troubleshooting

This chapter covers a number of known issues that may arise when using Webots. Please read it
carefully. It can help for most common problems with Webots. However, if the problem remains,
please, send a bug report to Cyberbotics.

8.1 Common problems and solutions

Problem: Webots sometimes leaves some controllers or supervisors alive even after quitting.
Such controllers or supervisors are independent processes using system resources. It might
be useful to destroy them in order to release the resources they use.

Solution: On UNIX, the useless controllers should appear in the list of processes by issuing a
ps or atop command. Then, you will get theid (process identifier) and will be able
to destroy them with &l command.
On Windows, you can remove the useless controllers by pressing once (and only once, oth-
erwise you risk to reboot your system) the combination of KEyRL+ALT+DEL Using
the arrow keys choose the process corresponding to the controller to removeEiRezss
or click in theEnd Task button.

Problem: Webots crashes each time | launch it.

Solution: Remove the .webotsrc file from your home directory (on UNIX) or from your Win-
dows system directory (on Windows) and relaunch Webots.

Problem: On UNIX, the real robot doesn’t work via the serial link. Webots says “Unable to
open serial port”.

Solution: Check that the permissions of the serial device files are set appropriately. These files
must be readable and writable by all the users. For example, to éeeicuald , you

93

94 CHAPTER 8. TROUBLESHOOTING

can do:

Is -l /dev/cua0l

crw-rw-rw- 1 root uucp 5 64 Aug 27 16:59 /dev/cua0

These are the right permissions. If they are different, you can change them by logging on
as root and typing:

chmod a+rw /dev/cua0

Problem: On Windows, Webots cannot compile any controller present in the original distribu-
tion of Webots.

Solution: Check if your compiler is properly installed in the following way: delete (or rename)
the file makefile.scp in the controllers directory in order to skip the automatic
compilation and try again to load the controller.

Problem: On Windows, Webots cannot compile my own controller program.

Solution: Compile your controller program manually using the console.

8.2 How to | send a bug report ?

If you find a bug in the Webots software, or have a problem which is not covered within the
documentation and the examples, then you could send a bug report to Cyberbotics. In order
to do so, write an e-mail tgsupport@cyberbotics.com . This e-mail must contain the
following information:

1. Your name.

2. The version of Webots you use.

3. A complete description of your system configuration: machine, operating system, and
eventually additional hardware like 3D graphics board.

4. A complete description of the bug allowing us to reproduce it step by step.
5. Optionally, some material allowing us to reproduce the bug (i.e., the source code of a

controller program, a world file, etc.).

We really appreacite any bug report. They contribute to the improvement of the quality of our
software. Thank you in advance.

8.2. HOW TO 1 SEND A BUG REPORT ?

95

96

CHAPTER 8. TROUBLESHOOTING

	Installing Webots
	Hardware requirements
	Registration procedure
	Webots Floating License System
	Registering

	Installation procedure
	PC i386 / Linux
	Macintosh PowerPC / YellowDog Linux, MkLinux or Linux PPC
	Sun Sparc / Solaris
	Windows 95, Windows 98 and Windows NT
	Choose the compiler
	OPENGL32.DLL & GLU32.DLL
	Hardware accelerated graphics cards
	Compiler installation
	The MAKEFILE script
	Cross-compilation
	The preferences file
	Uninstallation

	Webots Basics
	Running Webots
	Running a simulation
	Exporting as animated GIF (UNIX only)
	Controlling the point of view
	Navigating in the scene
	Switching between the World View and the Robot View

	Editing the environment
	Creating, opening and saving worlds
	Adding objects
	Moving objects
	Cut, copy and paste operations
	Changing the Background
	Changing the Ground
	Going further

	Working with the Khepera robots
	Khepera overview
	Creating a simulated Khepera
	Moving the Khepera
	Sensor representation
	Motors representation
	Jumper configuration
	Extension turrets: K-Bus
	Khepera controllers
	Moving to the real Khepera via the serial connection
	Remote control of the real Khepera
	Cross-compiling for the real Khepera
	Software requirements

	Working with Supervisors
	Working with the Alice robot
	Alice overview
	Programming the Alice robot

	Miscellaneous
	Hiding and showing the buttons
	Setting up preferences

	Directory structure

	Sample Webots Applications
	simple.wbt
	five.wbt
	phototaxy.wbt
	jumper.wbt
	finder.wbt
	can.wbt
	attacker.wbt
	buffer.wbt
	town.wbt
	house.wbt
	chase.wbt
	stick_pulling.wbt
	alice.wbt

	Programming with the Khepera API
	My first Khepera program
	Source code
	Controller directory structure
	Compiling the controller
	Modifying the controller

	Webots execution scheme
	Khepera controllers
	Other controllers

	Getting sensor information
	Controlling Actuators
	Working with extension turrets
	K213 turret
	K6300 turret
	Gripper turret
	Panoramic turret

	Programming with the Supervisor API
	EAI: External Authoring Interface
	Getting a pointer to a node
	Reading information from the world
	Editing the world
	eai_set_xxx
	eai_delete_node
	eai_refresh_world

	Sending messages to the robots
	Overview
	Messages for the Alice robot
	Encoding

	Using GUI: the Graphical User Interface API
	Basics
	Include file and library
	GUI objects
	Constants
	Functions
	Constructor functions
	Destructor functions
	Read functions
	Write functions

	Getting started
	Editing, adding and deleting gobs
	Editing gobs
	Adding gobs
	Deleting gobs

	Working with widgets
	Events
	Callback function

	Going further

	Advanced Webots programming
	Hacking the world files
	Overview
	Robots and Supervisors
	Textures

	Using external C/C++ libraries
	Interfacing with third party software
	Using a pipe based interface
	Using other Inter Process Communication systems

	Troubleshooting
	Common problems and solutions
	How to I send a bug report ?

