
WEBOTS 2.0
User Guide

c© 1998, 1999 Cyberbotics
www.cyberbotics.com

September 13, 1999

2

c© 1998, 1999 Cyberbotics S.a r.l.
All Rights Reserved

CYBERBOTICS S.A R.L. (“CYBERBOTICS”) MAKES NO WARRANTY OR CONDITION,
EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
REGARDING THIS MANUAL AND THE ASSOCIATED SOFTWARE. THIS MANUAL IS
PROVIDED ON AN “AS-IS” BASIS. NEITHER CYBERBOTICS NOR ANY APPLICABLE
LICENSOR WILL BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAM-
AGES.

This software was initially developped at the Laboratoire de Micro-Informatique (LAMI) of
the Swiss Federal Institute of Technology, Lausanne, Switzerland (EPFL). The EPFL makes no
warranties of any kind on this software. In no event shall the EPFL be liable for incidental or
consequential damages of any kind in connection with use and exploitation of this software.

Trademark information

CodeWarrior is a registered trademark of Metrowerks, Inc.

IRIX, O2 and OpenGL are registered trademark of Silicon Graphics Inc.

Khepera is a registered trademark of K-Team S.A.

Linux is a registered trademark of Linus Torwalds.

Macintosh is a registered trademark of Apple Computer, Inc.

Pentium is a registered trademark of Intel Corp.

PowerPC is a registered trademark of IBM Corp.

Red Hat is a registered trademark of Red Hat Software, Inc.

Solaris and Solaris OpenGL are registered trademarks of Sun Microsystems, Inc.

All SPARC trademarks are used under the license and are trademarks or registered trademarks of SPARC
International, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

SuSE is is a registered trademark of SuSE GmbH.

UNIX is a registered trademark licensed exclusively by X/Open Company, Ltd.

VisualC++, Windows, Windows 95, Windows 98 and Windows NT are registered trademarks of Microsoft,
Corp.

Foreword

Webots was originally developed as a research tool for investigating various control algorithms
in mobile robotics. This simulation software has been carefully designed to facilitate the transfer
to real robots. It is currently specific to the Khepera robot and to the Alice robot. However,
forthcoming versions of Webots will include more robots.

This user guide will get you started using Webots. However, the reader is expected to have a
minimal knowledge in mobile robotics as well as in C programming. It is not necessary to have
a real robot to use Webots.

Cyberbotics is grateful to all the people who contributed to the development of Webots, Webots
sample applications, Webots User Guide, Webots Reference Manual, and the Webots web site,
including Yuri Lopez de Meneses, Auke-Jan Ijspeert, Gerald Foliot, Allen Johnson, Michael
Kertesz, Aude Billiard, and many others. Moreover, many thanks are due to Prof. J.-D. Nicoud
(LAMI-EPFL) and Dr. F. Mondada for their valuable support.

3

4

Contents

1 Installing Webots 13

1.1 Hardware requirements . 13

1.2 Registration procedure . 13

1.2.1 Webots Floating License System . 13

1.2.2 Registering . 14

1.3 Installation procedure . 15

1.3.1 PC i386 / Linux . 16

1.3.2 Macintosh PowerPC / YellowDog Linux, MkLinux or Linux PPC 16

1.3.3 Sun Sparc / Solaris . 16

1.3.4 Windows 95, Windows 98 and Windows NT 17

2 Webots Basics 23

2.1 Running Webots . 23

2.2 Running a simulation . 23

2.3 Exporting as animated GIF (UNIX only) . 25

2.4 Controlling the point of view . 25

2.4.1 Navigating in the scene . 26

2.4.2 Switching between the World View and the Robot View 26

2.5 Editing the environment . 26

2.5.1 Creating, opening and saving worlds . 26

2.5.2 Adding objects . 28

2.5.3 Moving objects . 30

2.5.4 Cut, copy and paste operations . 31

5

6 CONTENTS

2.5.5 Changing the Background . 31

2.5.6 Changing the Ground . 31

2.5.7 Going further . 32

2.6 Working with the Khepera robots . 32

2.6.1 Khepera overview . 32

2.6.2 Creating a simulated Khepera . 33

2.6.3 Moving the Khepera . 34

2.6.4 Sensor representation . 35

2.6.5 Motors representation . 36

2.6.6 Jumper configuration . 36

2.6.7 Extension turrets: K-Bus . 36

2.6.8 Khepera controllers . 37

2.6.9 Moving to the real Khepera via the serial connection 38

2.7 Working with Supervisors . 40

2.8 Working with the Alice robot . 41

2.8.1 Alice overview . 41

2.8.2 Programming the Alice robot . 41

2.9 Miscellaneous . 42

2.9.1 Hiding and showing the buttons . 42

2.9.2 Setting up preferences . 42

2.10 Directory structure . 43

3 Sample Webots Applications 45

3.1 simple.wbt . 45

3.2 five.wbt . 46

3.3 phototaxy.wbt . 47

3.4 jumper.wbt . 48

3.5 finder.wbt . 49

3.6 can.wbt . 50

3.7 attacker.wbt . 51

3.8 buffer.wbt . 52

CONTENTS 7

3.9 town.wbt . 53

3.10 house.wbt . 54

3.11 chase.wbt . 55

3.12 stickpulling.wbt . 56

3.13 alice.wbt . 57

4 Programming with the Khepera API 59

4.1 My first Khepera program . 59

4.1.1 Source code . 59

4.1.2 Controller directory structure . 60

4.1.3 Compiling the controller . 61

4.1.4 Modifying the controller . 61

4.2 Webots execution scheme . 62

4.2.1 Khepera controllers . 62

4.2.2 Other controllers . 63

4.3 Getting sensor information . 64

4.4 Controlling Actuators . 65

4.5 Working with extension turrets . 65

4.5.1 K213 turret . 66

4.5.2 K6300 turret . 66

4.5.3 Gripper turret . 66

4.5.4 Panoramic turret . 67

5 Programming with the Supervisor API 77

5.1 EAI: External Authoring Interface . 77

5.1.1 Getting a pointer to a node . 77

5.1.2 Reading information from the world . 78

5.1.3 Editing the world . 78

5.1.4 Sending messages to the robots . 78

8 CONTENTS

6 Using GUI: the Graphical User Interface API 81

6.1 Basics . 81

6.1.1 Include file and library . 81

6.1.2 GUI objects . 81

6.1.3 Constants . 82

6.1.4 Functions . 82

6.2 Getting started . 84

6.3 Editing, adding and deleting gobs . 84

6.3.1 Editing gobs . 84

6.3.2 Adding gobs . 85

6.3.3 Deleting gobs . 85

6.4 Working with widgets . 86

6.4.1 Events . 86

6.4.2 Callback function . 87

6.5 Going further . 88

7 Advanced Webots programming 89

7.1 Hacking the world files . 89

7.1.1 Overview . 89

7.1.2 Robots and Supervisors . 89

7.1.3 Textures . 90

7.2 Using external C/C++ libraries . 90

7.3 Interfacing with third party software . 90

7.3.1 Using a pipe based interface . 90

7.3.2 Using other Inter Process Communication systems 91

8 Troubleshooting 93

8.1 Common problems and solutions . 93

8.2 How to I send a bug report ? . 94

List of Figures

1.1 Webots registration page . 15

2.1 Default world . 24

2.2 Speedometer . 25

2.3 Creating a new world . 27

2.4 Can properties window . 29

2.5 Lamp properties window . 29

2.6 Wall properties window . 30

2.7 Vertice ordering in Wall nodes . 30

2.8 Background color . 32

2.9 Ground properties . 32

2.10 The Khepera robot . 33

2.11 Creating a new robot . 34

2.12 Khepera properties window . 34

2.13 Khepera bus plugin . 37

2.14 Successful serial connection . 39

2.15 Downloading a cross-compiled controller . 40

2.16 The Alice robot . 41

2.17 Webots preferences . 42

2.18 Webots directory structure . 43

2.19 Webots directory structure . 44

3.1 five.wbt . 46

3.2 phototaxy.wbt . 47

3.3 jumper.wbt . 48

9

10 LIST OF FIGURES

3.4 finder.wbt . 49

3.5 can.wbt . 50

3.6 attacker.wbt . 51

3.7 buffer.wbt . 52

3.8 town.wbt . 53

3.9 house.wbt . 54

3.10 chase.wbt . 55

3.11 stickpulling.wbt . 56

3.12 alice.wbt . 57

4.1 Structure of a controller program . 63

4.2 The real K213 turret . 68

4.3 The simulated K213 turret . 69

4.4 The robot window for the K213 turret . 69

4.5 The real K5300/K6300 turret . 70

4.6 The simulated K6300 turret . 71

4.7 The robot window for the K6300 turret . 71

4.8 The real gripper turret . 72

4.9 The simulated gripper turret . 73

4.10 The robot window for the gripper turret . 73

4.11 The real panoramic turret (prototype) . 74

4.12 The simulated panoramic turret . 75

4.13 The robot window for the panoramic turret . 75

5.1 Command byte for the Alice robot . 80

5.2 Parameter byte for the Alice robot . 80

6.1 Widgets available in the GUI . 86

List of Tables

1.1 Supported system configurations . 13

2.1 Degrees of freedom for navigation . 26

2.2 Khepera sensor values . 35

5.1 Alice Messages . 79

11

12 LIST OF TABLES

Chapter 1

Installing Webots

1.1 Hardware requirements

Webots is supported on the UNIX / X11 systems described in table 1.1 as well as on Windows
95, Windows 98 and Windows NT.

Supported Hardware Recommanded Hardware Operating System

PC i386 Pentium II RedHat 6.0, SuSE 6.1
or Debian 2.1

Macintosh PowerPC PowerPC G3 YellowDog Linux 1.1,
Linux PPC R5 or MkLinux DR3

Sun Sparc Workstation Sparc 20 Solaris 2.6

Table 1.1: Supported system configurations

OpenGL hardware acceleration is supported only on Sun with 3D graphics board and under
Windows with an OpenGL acceleration board (see below for more information). It will be soon
available under Linux as well.

1.2 Registration procedure

1.2.1 Webots Floating License System

Since Webots 2.0, a new license system has been introduced to facilitate the utilization of Webots
on several computers. This Floating License System (FLS) relies on a license server located in
Southern California (USA) which is contacted each time Webots is launched. Webots send to
the server a number of information, including the user ID and the hostname on which Webots
is running. This allows the server to decide whether or not the user could use Webots on that

13

14 CHAPTER 1. INSTALLING WEBOTS

machine according to his/her license. Then, the server replies to Webots to acknoledge or refuse
the utilization.

Hence, Webots can be installed to an unlimited number of computer, regardless of the license.
However, the daily utilization of Webots will depend on your license: According to the number
of licenses you purchased, you could use Webots simulataneously on a corresponding number of
computers. Note that simultaneously means the same day, that is you can change of computer
everyday if you need.

For example, if you purchase a single license of Webots, you could use it on a computer on
Monday, then another people could use it on an other computer on Tuesday, etc. This is very
useful, for example, for institutions sharing the utilization of Webots among different groups
of people. However, having a single license will require that you get synchronized with other
people, so that no more than one computer is used to run Webots the same day. If several people
need to use Webots the same day and cannot share the same computer (like with student classes,
or teams of researchers using extensively Webots), then, you will need to purchase a multiple
license corresponding to the number of simultaneous users.

Webots licenses determine the number of computers on which you can run Webots, not the
number of users using Webots at the same time. That is, with a single Webots license, several
users can run Webots on a server computer from their local terminals. The main disadvantage of
this is that the speed of Webots will decrease as the number of users increases and this may lead
to very poor performance when, for example, a class of students is using Webots from the same
server. The workaround to this kind of problem is purchasing additional licenses.

When installing Webots, you will get a license file, calledwebots.key , containing your name,
address and user ID. This encrypted file will enable you to use Webots according to the license
you purchased. This file is stricly personal: you are not allowed provide copies of it to any third
party in any way, including publication of that file on any Internet server (web, ftp, or any other
public server). Any copy of your license file is under your responsibility. If a copy of your license
file is used by an unauthorized third party to run Webots, then Cyberbotics would disable your
license to prevent such an illegal use, preventing also you from using Webots until the problem
is fixed.

Webots licenses are (1) non-transferable and (2) non-exclusive. This means that (1) you cannot
sell or give your Webots license to any third party, and (2) Cyberbotics and its official Webots
resellers may sell or give Webots licenses to third parties.

If you need further information about the Webots Floating License System, please send an e-mail
to license@cyberbotics.com .

Please read your license agreement carefully before registering. This license is provided within
the software package. By using the software and documentation, you agree to abide by all the
provisions of this license.

1.2. REGISTRATION PROCEDURE 15

1.2.2 Registering

In order to register your computer(s) to run Webots, you will have to fill out a form on the Web
and you will receive via e-mail thewebots.key file corresponding to your license. The form
is available at the following web address:

http://www.cyberbotics.com/registration/webots.html (see figure 1.1)

Figure 1.1: Webots registration page

Please take care to properly fill each field of this form. TheSerial Number is the serial
number of your own Webots package which is printed on the back side of the CD-ROM package
under the headingS/N: .

After completing this form, click on theSubmit button. Then, you will receive, within a
few hours, via e-mail to the address you mentioned in the form, your personal license file
(webots.key), which is needed to install a registered version of Webots on your system as
we will see below.

16 CHAPTER 1. INSTALLING WEBOTS

1.3 Installation procedure

In order to install Webots on your system, you will have to follow the instructions corresponding
to your computer / operating system listed below:

1.3.1 PC i386 / Linux

1. Log on asroot .

2. Insert the Webots CD-ROM and mount it (this might be automatic).
mount /mnt/cdrom rpm -Uvh /mnt/cdrom/libraries/Mesa-3.0-1.i386.rpm
rpm -Uvh /mnt/cdrom/webots/webots-2.0-1.i386.rpm

3. You may need to set the environment variableWEBOTSHOMEto /usr/local/webots .
This can be achieved from one of the following commands:
export WEBOTS HOME=/usr/local/webots
setenv WEBOTS HOME /usr/local/webots
depending on your shell. Note that the rpm installation script will automatically set this
variable for you in the/etc/profile file, so that any user of your system could launch
Webots.

4. Copy your personalwebots.key file into the/usr/local/webots/ directory.

5. Optionally, you may check theconvert program is installed on your system. This is
useful to save animated GIFs from Webots. If not installed, you will be able to find it in
theImageMagick package which lies in thelibraries directory of the CD-ROM.

1.3.2 Macintosh PowerPC / YellowDog Linux, MkLinux or Linux PPC

The installation procedure is the same as for the PC i386 / Linux system, except that you must
install the RedHat packagesMesa-3.0-1.ppc.rpm andwebots-2.0-1.ppc.rpm cor-
responding to the Linux PowerPC architecture.

1.3.3 Sun Sparc / Solaris

1. Log on asroot .

2. Insert the Webots CD-ROM and mount it.

3. Check whether the OpenGL library is installed:
what /usr/lib/libGL.so
If it is installed you should get a message indicating the release version. The most recent

1.3. INSTALLATION PROCEDURE 17

version is 1.2 (as of December 18, 1998). If it is not installed or you would like to get the
latest release, you can either install it from the CD-ROM (in thelibraries/opengl
directory), or go to
http://www.sun.com/solaris/opengl/
and follow the instructions to get it installed.

4. If you have Sun OpenGL installed, copy the filewebots2.0Solaris.tar.gz lo-
cated in thewebots directory on the CD-ROM to your/usr/local/ directory. This
directory is taken as an example and can be changed according to the organization of
your file system. If you don’t want to install Sun OpenGL, you can use the packagewe-
bots2.0SolarisMesa.tar.gz instead ofwebots2.0Solaris.tar.gz .

5. Execute:cd /usr/local

6. Uncompress the package:gunzip webots2.0Solaris.tar.gz

7. Untar the package:tar xvf webots2.0Solaris.tar

8. Execute one of the following commands:
export WEBOTS HOME=/usr/local/webots
setenv WEBOTS HOME /usr/local/webots
depending on your shell.

9. Create a shortcut so that thewebots executable is in the PATH of any user:
ln -s /usr/local/webots/webots /usr/local/bin/webots

10. Set the environment variable WEBOTSHOME of the users who want to use Webots to
/usr/local/webots as you did in (7).

11. Copy your personnalwebots.key file into the/usr/local/webots/ directory.

12. You may need to install libpng on your system, if not already installed. You will be able to
find this package in thelibraries directory of the CD-ROM.

13. Optionally, you may check if theconvert program is installed on your system. This is
useful to save animated GIFs from Webots. If not installed, you will be able to find it in
theImageMagick package which lies in thelibraries directory or the CD-ROM.

1.3.4 Windows 95, Windows 98 and Windows NT

To install Webots on your Windows computer, go through the following steps:

1. Uninstall any previous release of Webots if any.

2. Insert the Webots CD-ROM and open it the explorer.

18 CHAPTER 1. INSTALLING WEBOTS

3. Go to thewebots/windows directory on the CD-ROM.

4. Double click on theWEBOTSSETUP.EXEfile.

5. Follow the installation instructions.

Here are some explanations about the installation procedure:

1.3.4.1 Choose the compiler

In order to create the robot controller programs, you need to have a C/C++ compiler installed in
your computer. The compilers supported by Webots are Microsoft Visual C++ 6.0 and CygWin
20.1 GCC. You can obtain CygWin for free from the web site:
http://sourceware.cygnus.com/cygwin ,
or you can find a copy on our ftp server:
ftp://ftp.cyberbotics.com .
During the installation, you will be prompted to choose one of these compilers. You can install
Webots first, and install the choosen compiler after, or vice-versa. You can also choose the option
“No compiler”. In this case, you will be able to view the examples included in the distribution,
but you will not be able to compile them. If you have your own compiler already installed
and want to use this, you have to choose the “No compiler” options, too. In this way, you
can develop your own controllers using your compiler, but you have to manage the compilation
routines manually. You will be able to change the compiler also after installation of Webots, by
editing and typing some changes in the text filemakefile.scp (see later for more details).

1.3.4.2 OPENGL32.DLL & GLU32.DLL

Webots uses the OpenGL graphic library for rendering the 3D scene. The dynamically linked
librariesopengl32.dll andglu32.dll will be installed in your operating system directory
(for exampleC: \Windows\System) if not already present. These are the Microsoft default
libraries that are included in the Windows installation CD staring from Windows 95 version B.
If you have an accelerated 3D graphics card that uses different libraries with the same name (like
with some 3DFX cards), make a backup and remove (or rename) these files before installing
Webots, otherwiseopengl32.dll andglu32.dll will not be installed and Webots might
not run properly.

1.3.4.3 Hardware accelerated graphics cards

Webots has been tested on nVidia TNT2 32bits and on 3DFX Voodoo Banshee graphics cards
for hardware acceleration.

1.3. INSTALLATION PROCEDURE 19

1. nVidia TNT2 32 bits: The hardware accleration works fine for both the main window of
Webots and the turrets window. When the Khepera properties window is displayed, the
error “Pixel Format error” sometime occours. Webots stops working properly.

2. 3DFX Voodoo Banshee: The new Quake III compatible drivers are available from the
web sitewww.3dfx.com . These new drivers include an ICD OpenGL are not completly
compatible whith standard OpenGL (they are only tested to work for Quake III). Moreover
the HW acceleration is working only if you set the screen colors to 16 bits (65536 colors).
In this mode sometimes the same problem with the TNT2 occours (the “Pixel Format
error”), moreover the textures make Webots crash. The acceleration does not seems to
work for a properties window displayed using some turrets.

1.3.4.4 Compiler installation

Here is some help for installing the compilers.

1. Microsoft Visual C++ 6.0: Follow the normal procedure for installing this compiler. You
will be prompted to choose whethever to change the autoexec.bat (on Windows 9x) or the
PATH environment variable (on Windows NT). If you choose this way, you want have to
do anything more. Otherwise you have to do it manually. In order to set the environment
variable for the command line compilation you have to add in theAUTOEXEC.BATfile
these lines:

path {path where MSVC is installed }\bin
vcvars32

The first line sets the path for the executable of the compiler (e.g.cl.exe andlinker.exe),
the second line calls theVCVARS32.BATfile that sets the environment for the compiler.
Reboot your computer. If you receive a message like “out of environment space” you have
to go to the “Properties” of the MSDOS console and set, in the Memory tab, the initial en-
vironment space to a higher value (1024 for instance), or better, you can add the following
line toConfig.sys :

shell=c: \command.com /e:1024 /p

2. Cygwin: The Cygwin compiler is a GNU compiler, so you can get it for free from the web
site:
http://sourceware.cygnus.com/cygwin/download.html
or from our ftp server at:
ftp.cyberbotics.com/cygwin/full.exe .
At the time writing the current release is the Beta 20.1. Install the software following the
installation instructions, then modify theAUTOEXEC.BATin order to set the environment
variable for command line compilation. You have to add these lines:

20 CHAPTER 1. INSTALLING WEBOTS

path {path where MSVC is installed }\bin
SET MAKEMODE=UNIX

3. Other compilers:

Webots performs the compilation and the link of the controller programs automatically if
you set the compiler as described. It uses the makefile included in each controller direc-
tory. In particular the filemakefile.vc6 is used for compiling with Microsoft Visual
C++ 6.0, and the filemakefile.gcc when you choose Cygwin. You can decide, at
istallation time, to avoid this automatic compilation choosing the “No compilers”. This
option is useful for two reasons: firstly you can view the examples in the distribution (all
the controllers are provided with the executable) without an installed compiler, and sec-
ondly you can develop your own controller program using your preferred compiler. In this
case you have to create your own makefile, and perform the compilation and the link to
Webots libraries manually. You can use the .lib import library files only if your compiler
accept the Microsoft Visual C++ version 6.0 format. For instance, version 5.0 of the same
compiler doesn’t work. This method was reported to work with Metrowerks Code Warrior
for Windows. If you successfully develop a controller program using a compiler different
from MSVC++6.0 or Cygwin, please send us the makefile and the procedures you used for
compiling. We will be happy to add your compiler to the list of the supported compilers
by Webots.

1.3.4.5 The MAKEFILE script

In order to perform automatic compilation Webots for Windows uses a script file. This is a plain
text file calledmakefile.scp and it is present in each controller directory. Each line of the
makefile.scp shows the command line you have to type in theMSDOSconsole in order to
make (compile and link) the controller program. Webots reads this file each time you load a new
controller or a new world from the Webots editor. If Webots finds a line that is not commented
(i.e. it doesn’t start with the character “;” or “#”), it will execute the command. Your choose of
the compiler during the installation change themakefile.scp .

1. If you choose MSVC++ 6.0 the file appears as:

; Makefile for VC++ 6.0
nmake /f Makefile.vc6
;
; Makefile for CygWin GCC
;make -f Makefile.gcc
;nocompilation

2. If you choose Cygwin the file appears as:

1.3. INSTALLATION PROCEDURE 21

; Makefile for VC++ 6.0
;nmake /f Makefile.vc6
;
; Makefile for CygWin GCC
make -f Makefile.gcc
;nocompilation

3. If you choose the “No compiler” option the file appears as:

; Makefile for VC++ 6.0
;nmake /f Makefile.vc6
;
; Makefile for CygWin GCC
;make -f Makefile.gcc
nocompilation

You are free to edit themakefile.scp , for example to change the commmand line or to
change the compiler you are using, or to decide to use no automatic compilation. Because there is
onemakefile.scp in each controller directory, if you change themakefile.scp , this will
change the behaviour of Webots only for the controller program in which themakefile.scp
is present. So you can, for instance, decide to have some controller programs compiled with
MSVC++ 6.0, some with Cygwin, and some not automatically compiled. Remember these sim-
ple rules to avoid crashing Webots:

◦ no blank lines must appear in the file;

◦ the characters for commenting out a line are “;” or “#” and must be at the beginning of the
line;

◦ the first non commented line is the one used;

◦ the command in the non remarked line is used like at the DOS prompt: if it is incorrect
an error occurs and may stop the compilation or crash Webots. You are responsable for
ensuring the correctness of the command.

1.3.4.6 Cross-compilation

Cross compilation gives the possibility to compile the controller for the internal chip of a real
Khepera, download it into the memory of the robot and let it run standalone. The cross compi-
lation is allowed only using the GCC cross compilation. You must have the “khepack” package
provided by K-Team (for more information seewww.k-team.com or the manual provided
whith khepack).

For installation of the GCC cross compiler, follow the instructions in the khepack manual. Then
you will have to do the following:

22 CHAPTER 1. INSTALLING WEBOTS

1. You have to copy thekepack5.xx directory in the cross compiler directory. Thus if you
install the GCC cross compiler inC: \GCC(as suggested in the khepack instructions), you
must have the khepack in the following directory:C: \GCC\khepack5

2. The khepack directory must be namedkhepack5 even if you have a different version (for
example 5.02). Please make a copy of the directory in the cross compiler directory (see 1.)
and rename it tokhepack5 .

1.3.4.7 The preferences file

When Webots is first ran the preferences file is created asc: \windows \system \.webotsrc
(wherec: \windows is the Windows directory). You can edit it and make changes using a text
editor (it is a text file) or directly from the Webots menu. You can also delete this file if something
goes wrong and then re-run Webots to create it again.

1.3.4.8 Uninstallation

Before installing a new version of Webots, you will have to uninstall the old one (if any) and
remove the entire directory and files. Do not delete yourwebots.key file!

Chapter 2

Webots Basics

2.1 Running Webots

On UNIX, type webots to launch the simulator. On Windows click thestart button on
the system bar, go to thePrograms|Cyberbotics menu and click onWebots 2.0 You
should see the world window appear on the screen (see figure 2.1).

From there, a number of possibilities are available through menus and buttons. The control
wheels and their associated buttons on the left, right and bottom side of the window allow you
to navigate in the scene. You can also click in the scene to select an object (Alice , Ball ,
Can, Ground , Khepera , Lamp or Wall) or double-click on an object to open its properties
window.

The “About” window is available from theAbout... item in theFile menu. This window
displays the license information.

To quit Webots, you can either close the world window, or use theQuit item in theFile menu.

2.2 Running a simulation

In order to run a simulation, a number of buttons are available, which correspond to menu items
in theSimulation menu:

◦ Stop : interrupt theRun or theFast mode.

◦ Step : execute one simulation step.

23

24 CHAPTER 2. WEBOTS BASICS

Figure 2.1: Default world

◦ Step : turn on/off the recording mode (to export the simulation to an animated GIF
image).

◦ Run: execute simulation steps until theStop mode is entered.

◦ Fast : same asRun, except that no display is performed.

TheFast mode corresponds to a very fast simulation mode suited for heavy computation (ge-
netic algorithms, vision, learning, etc.). However, since no display of the world is performed

2.3. EXPORTING AS ANIMATED GIF (UNIX ONLY) 25

duringFast simulation, the scene in the world window becomes black until theFast mode is
stopped.

A speedometer (see figure 2.2) allows you to observe the speed of simulation on your computer.
It indicates how fast the simulation runs comparing to real time. In other words, it represents
the speed of the virtual time. If the value of the speedometer is 2, it means that your computer
simulation is running twice as fast as the corresponding real robots would do. This information
is relevant inRun mode as well as inFast mode.

Figure 2.2: Speedometer

The time step can be choosen from the popup menu situated next to the speedometer. It indicates
how frequently the display is refreshed. It is expressed in virtual time milliseconds. The value of
this time step also defines the duration of the time step executed during theStep mode.

In Run mode, with a time step of 64 ms and a fairly simple world displayed with the default
window size, the speedometer will typically indicate approximately 0.5 on a Pentium II / 266
without hardware acceleration and 4 on an Ultra Sparc 10 Creator 3D.

2.3 Exporting as animated GIF (UNIX only)

TheRecord mode will allow you to export a simulation as an animated GIF file that can further
be used to set up nice web pages or multi-media presentations. In order to proceed, you will need
to have the convert utility installed (see intallation procedure in this manual). Webots will save
each image in PNG format in the temporary folder. Then, it will invoke the convert program to
produce the animated GIF file from the PNG images. However, note that the animated GIF files
produced here are not optimized and hence can be huge! So, reduce the size of the view as much
as possible, and don’t make too long movies... Actually, each image is stored in the GIF file
whereas it would be possible to optimze it by storing only the changes from one image frame to
the other. In order to proceed such an optimization we recommand you to use the Gimp software
(GNU Image Manupulation Program) which is a very powerful free software tool. This software
is included on the Webots CD-ROM and can be used under the terms of the GNU General Public
License.

On Windows this feature is not working.

2.4 Controlling the point of view

The view of the scene is produced by a camera which is set according to a given position and
orientation. You can change this position and orientation to navigate in the scene. Moreover you

26 CHAPTER 2. WEBOTS BASICS

can set the camera to follow the movements of a given robot or to remain fixed.

2.4.1 Navigating in the scene

To navigate in the 3D scene, you can use the three control wheels situated on the edges of the
world window. Each wheel is associated with a button allowing to switch between a rotation and
a translation. Hence, you can control six degrees of freedom to move the camera in the scene.
These degrees of freedom are also available from the keyboard when the world window is active
as explained in table 2.1.

axis Rotation modifier keys Translation modifier keys

X tilt shift ←→ horizonal scroll ctrl ↑ ↓
Y pan shift ←→ vertical scroll ctrl ↑ ↓
Z roll ←→ zoom ↑ ↓

Table 2.1: Degrees of freedom for navigation

Notice that if an object is selected in the scene, the camera will rotate, according to the selected
axis, around this object.

2.4.2 Switching between the World View and the Robot View

You can choose between two different points of view:

◦ World View : this view corresponds to a fixed camera standing in the world.

◦ Robot View : this view corresponds to a mobile camera following a robot.

You can switch between both modes using the last item of theSimulation menu. But before
you go into this menu, you have to select a robot if you want aRobotView from this robot, or
unselect any robot if you want aWorld View (the most convenient way to unselect any robot is
to click on an object or in the background of the scene). Then, the last item of theSimulation
menu will be set appropriately, so that you can select either theRobot View or theWorld
View .

2.5 Editing the environment

2.5.1 Creating, opening and saving worlds

When the simulator is launched, a default world is loaded in the world window. In order to
create your own world, you can go to theFile menu and select theNew... item. A popup

2.5. EDITING THE ENVIRONMENT 27

window will appear as depicted on figure 2.3 letting you choose the size of the ground grid and
the number of plates it is made of.

Figure 2.3: Creating a new world

If any of these fields is set to zero, no ground is created.

TheFile menu will also allow you to perform the standard file operations:Open..., Save
andSave As... , respectively, to load, save and save with a new name the current world.

The following buttons can be used as shortcuts to menu items:

◦ New...

◦ Open...

◦ Save

The default worlds directory contains a lot of examples of worlds files (files ending up with the
.wbt suffix) which are described in chapter 3. However, on UNIX you won’t be able to save
your own worlds in this directory unless you are logged on asroot . We do not recommend
that you do so, however. On Windows, there is no protection on this directory and the files it
contains, but it’s better if you do not use this directory for your own worlds files. Instead, you
should create aworlds directory in your home directory and save your own world files there.

28 CHAPTER 2. WEBOTS BASICS

2.5.2 Adding objects

Several kinds of objects can be added from the world window. They are available through
theEdit menu or the corresponding buttons:

◦ New Ball... a ball with which the robots can play.

◦ New Can... a cylinder that can be grasped by the Khepera robots equipped with
a gripper turret.

◦ New Lamp... a light bulb emitting light visible by the infra-red sensors of the
Khepera robot.

◦ New Robot... a robot.

◦ New Wall... a rectangular parallelepiped wall, which is typically an obstacle
for robots.

For the creation of each of these objects, a popup window will appear, displaying the properties
of the object. You will then be able to change the position, orientation, color, etc. of the objects.
Usually the coordinates indicate the center of the object, just like in VRML 97. However, they
coordinate of theCan is an exception. It should always be set to 0, indicating that the can is set
on the ground. Here are some examples of properties windows depicted on figures 2.4, 2.5 and
2.6.

TheResistivity parameter of theCan object corresponds to the electrical resistivity of the
object as it can be measured by the sensor of the Gripper turret of the Khepera robot. This value
ranges from 0 to 255.

TheIntensity parameter of the Lamp object allows one to change the power of the light bulb,
so that infra-red sensors are more or less sensitive to this object. A value of 0 means that the lamp
is off while a value of 1 means that it is on with the default power. However, unlike with most
3D rendering software, there is no special lighting rendering effects due to the presence of such
aLamp in the scene. Such effects would slow down drastically the simulation speed.

TheWall is probably one of the most complex object to edit since it contains a variable number
of vertices. By default a four-verticesWall is created, but you can add new vertices. You can
also remove vertices as long as at least three vertices remain. For each vertice, you can edit its
2D coordinates, so that you define a plane shape that is extruded to produce theWall . Please
note that the order of the vertices is important: like in VRML 97, when progressing in the list of

2.5. EDITING THE ENVIRONMENT 29

Figure 2.4: Can properties window

vertices, the right-hand direction (perpendicular to the progression) should always point to the
inside of theWall object. The figure 2.7 explains this rule for ordering vertices.

Theheight , color , position andorientation of theWall can be changed by editing
the corresponding text fields.

Remember that to display the property window of an object in the scene, you will have to
double-click on this object. Robots are special objects. The properties window of robots will
be discussed later in this manual.

Figure 2.5: Lamp properties window

30 CHAPTER 2. WEBOTS BASICS

Figure 2.6: Wall properties window

2.5.3 Moving objects

A number of buttons are available in the bottom right side of the main window. They allow you
to select and move objects in the world:

◦ This turn button allows you to rotate objects: click on this button to enter the turn
mode, then click on an object to select it and then click somewhere else and drag the
mouse pointer to rotate the selected object.

1

2 3

4
5

6

Figure 2.7: Vertice ordering in Wall nodes

2.5. EDITING THE ENVIRONMENT 31

◦ This lift button allows you to translate objets along the vertical axis. It is especially
suited forBall andLamp objects.

◦ This move button allows you to translate the object on the ground using the familiar
drag’n’drop interface. It is probably one of the most useful modes.

◦ This pointer button allows you to select an object by clicking on it and to open its
properties window by double-clicking on it.

2.5.4 Cut, copy and paste operations

The standard editing operations are avaible either from theEdit menu or the following buttons:

◦ Cut

◦ Copy

◦ Paste

In order to perform theCut or Copy operation, you first need to select an object by clicking on
it in the scene. Pasted objects will appear close to their original clone. You will have to turn,
move, or edit the coordinates in their properties windows to move them to the desired location
and orientation. Note that robots are special objects which can be cut out, but not copied nor
pasted.

2.5.5 Changing the Background

TheBackground... item in theEdit menu will allow you to define the color of the back-
ground in the world (see figure 2.8). This might be useful, especially when using cameras, to
improve distinction between objects and the background.

2.5.6 Changing the Ground

TheGround... item in theEdit menu will allow you to redefine the ground (size and number
of plates) on which robots evolve. It will raise the properties window depicted in figure 2.9.

The first and second colors refer to the two colors used to create the ground grid. You can change
them to fit your needs.

32 CHAPTER 2. WEBOTS BASICS

Figure 2.8: Background color

Figure 2.9: Ground properties

2.5.7 Going further

It is also possible in Webots to use a subset of VRML 97 nodes. However, these nodes are not
available directly from the built-in Webots world editor. Instead, you should use a text editor to
edit the world files and add VRML 97 nodes you need. More details about this technique are
provided in this manual in theAvanced Webots Programmingchapter.

2.6 Working with the Khepera robots

2.6.1 Khepera overview

Khepera is a mini mobile robot (5 cm diameter, 70 g.) which was developed at EPFL - LAMI by
André Guignard, Edoardo Franzi and Francesco Mondada (see figure 2.10). It is commercially
available from K-Team S.A. (http://www.k-team.com). This robot is widespread in many
Universities all over the world and is used mainly for research and education. It has two motor

2.6. WORKING WITH THE KHEPERA ROBOTS 33

wheels and is equiped with 8 infra-red sensors allowing it to detect obstacles all around it in
a range of about 5 cm. These sensors can also provide information about light measurement,
allowing the robot to look for light sources. Khepera supports a number of extension turrets
including vision turrets, a gripper, a radio turret, a general I/O turret, etc. However, not all of
these turrets are implemented in Webots.

Figure 2.10: The Khepera robot

2.6.2 Creating a simulated Khepera

To create a robot, you can use either theNew Robot... menu item or the corresponding
button as seen previously. A popup menu will let you choose the type of robot you want to create
(see figure 2.11). Choose Khepera. You will be also prompted to assign a name to the robot. You
could choose any name you like. Let’s chooseMax, as an example:

The properties window ofMaxshould then appear (figure 2.12. However, it is possible to obtain
the properties window of any robot by double-clicking on the desired robot in the world window.

If Max isn’t a good name for you, you can change this by clicking on theNamebutton. The
Unselect button can be used to unselect the robot in the world window ; this button will then
be changed into aSelect button allowing the robot to be selected again. This might be very
useful when there are several robots in the world and you don’t know which one is represented
in your robot properties window. TheApply button performs the position changes if needed.

34 CHAPTER 2. WEBOTS BASICS

Figure 2.11: Creating a new robot

Figure 2.12: Khepera properties window

Finally, theClose button allows you to close this window. To get back to it, you will have to
double-click on the corresponding robot in the world window.

There is theoretically no limit to the number of robots being simulated. However, the limit is
actually the limit of your computer resources (memory, speed, inter-process communications,
etc.) and your patience...

2.6.3 Moving the Khepera

Several ways allow you to move the robot. You can either:

◦ use the buttons for moving / rotating objects.

◦ click on the little arrow buttons on the robot representation (between both motors).

2.6. WORKING WITH THE KHEPERA ROBOTS 35

color distance measurement light measurement

blue no obstacle detected no light source detected
cyan obstacle away light source away
green obstacle nearby light source nearby
yellow obstacle close light source close

red obstacle very close light source very close

Table 2.2: Khepera sensor values

◦ press the arrow keys on your keyboard (however, you must be careful that the robot window
is the current active window).

◦ type new coordinates and orientation in theX, Z andα text fields.X andZ correspond to
the position of the robot on the floor, expressed in meters (m), whileα corresponds to the
orientation of the robot expressed in degrees (deg). You will have to press the enter (or
return) key after editing each coordinate or orientation field, so that your changes are taken
into account.

Moving the robot this way won’t prevent it from entering obstacles! However, when the robot
moves on its own (i.e., with a controller), it cannot penetrate obstacles. ThePosition check
box allows one to enable and disable the display of theseX, Z andα coordinates. It might be
useful to disable such a display in order to accelerate a little bit the simualtion.

2.6.4 Sensor representation

The robot properties window contains a lot of information on the robot sensors and motors.
The Khepera robot has eight infra-red sensors all around allowing it to measure distance from
obstacles by emitting infra-red light and measuring the quantity of reflected light. These sensors
can also be used as passive sensors to measure the ambient infra-red light. Each of the infra-
red sensors is represented as a rectangle for distance measurement and as a triangle for light
measurement. These rectangles and triangles appear most often blue but their color actually
ranges from blue to red according to the measurements performed by the corresponding sensor
as explained in table 2.2.

Light sources are typicallyLamp objects while obstacles can be eitherCan, Box, robots or
Wall objects. Numerical values are also available for both distance measurement and light
measurement. However, only one numerical value can be displayed at a time for each sensor.
You can choose between the light and the distance numerical value with the corresponding check
boxes situated at the left hand side of the window. Numerical values can be described as follows:

◦ Distance values range from 0 (no obstacle detected) to 1023 (obstacle very close).

◦ Light values range from 0 (light source very close) to 512 (no light source detected).

36 CHAPTER 2. WEBOTS BASICS

Since these values are noisy, just like with the real sensors, they are always oscillating, giving a
rough approximation of the actual physical value.

The model of the infra-red sensors is based upon a lookup table for light and distance measure-
ment since the response is non-linear with the distance. The color of object has some effect on
the distance measurements since red or white objects reflect more infra-red light than green or
black objects. A random white noise of 10% is added to each measure (light and proximity) to
make the modeling of the sensor realistic.

2.6.5 Motors representation

The Khepera robot has two independent motor wheels allowing it to move forward, to move
backward, and to turn. Each of the two motors is symbolized by a square on the robot rep-
resentation. This square contains an arrow indicating the velocity of the motor (direction and
amplitude). A numerical value is also displayed which ranges from -20 to +20. Negative speed
values can be used to make the robot go backwards. Each of these motor speed representations
can be enabled or disabled by theMotors check boxes on the left hand side of the robot win-
dow. However, motor values can only be assigned by a robot controller, so you won’t be able to
observe different motor values unless you load a controller which is driving the motors and make
it run (see later).

2.6.6 Jumper configuration

The jumpers represented below the left motor can be switched on and off by clicking on them.
Since the robot can read these jumpers, this interface can be used as a communication way
between the robot and you. However, the jumpers configuration should not be changed when
using a real robot in remote control or download mode.

2.6.7 Extension turrets: K-Bus

Like on the real Khepera robot, it is possible with Webots to add extension turrets through the
Khepera extension bus called the K-Bus. In order to plug-in an extension turret into your virtual
Khepera, you just need to click on theK-Bus button. This will make a window appear in which
you will be able to select an extension turret for the robot as depicted in figure 2.13.

The central popup menu in the bottom of the window will allow you to plug-in a number of
extension turrets, including:

◦ Khepera K213 : a black and white linear camera.

◦ Khepera K6300 : a color video camera.

2.6. WORKING WITH THE KHEPERA ROBOTS 37

Figure 2.13: Khepera bus plugin

◦ Khepera Gripper : a gripper allowing Khepera to graspCan objects.

◦ Khepera Panoramic : a 240 degree linear black and white panoramic camera.

More information on these extension turrets will be detailled later in this manual.

2.6.8 Khepera controllers

In order to load a controller into the memory of a virtual robot, you will need to click on the
Controller button. Then, a file selector window will allow you to look for a directory whose
name ends up with the.khepera suffix. Such a directory is a controller directory for the
Khepera robot. It contains a number of files which will be explained later in chapter 4. As an
example, you can try out thebraiten.khepera controller. This controller will make the
robot move and avoid any obstacle.

A controller is actually a simple program written in C or C++ language. It can be compiled
either by you or by Webots. Then, Webots launches the controller as an independent process and
communicates with it through inter-process communications systems.

A GUI (Graphical User Interface) is also available and will allow you to set-up windows display-
ing your data and design your own user interfaces fulfilling your specific needs.

38 CHAPTER 2. WEBOTS BASICS

2.6.9 Moving to the real Khepera via the serial connection

From the robot properties window, it is very easy to switch from a virtual robot to a real robot.
In order to proceed, you will need a real Khepera robot connected via a serial link to your
computer. From Webots you can choose whether to control the real robot from the simulator or
to cross-compile and download the controller to the real robot. In the first case, data is being sent
continuously from Webots to the Khepera and vice versa, i.e., to read sensor data and send motor
commands. In the second case, the robot controller is cross-compiled for the real robot processor
and downloaded to the real robot which in turn executes the controller on board and no longer
interacts with the simulator.

2.6.9.1 Remote control of the real Khepera

Here are the steps to follow in order to set up a real robot connected to the simulator:

◦ Load a controller into the simulated robot (braiten.khepera is a good example for
testing the real robot control).

◦ Connect the real robot to one the serial ports of your computer (see the manual of your
robot to proceed).

◦ Set the robot serial mode to 38400 baud (mode 3) on both the simulated robot and the real
robot. Hence, the jumper configuration of the real robot should correspond to the jumper
configuration of the simulated robot. The jumpers of the simulated robot can be config-
urated from the widget situated just below the left motor in the robot window. However,
the default configuration of the simulated robot is actually mode 3 which corresponds to
38400 bauds. Note that slower serial modes can be used as well, i.e., mode 1 and mode 2.

◦ Check that the serial ports are properly configured by checking the preferences window
(Options menu,Preferences... item). On UNIX, the serial ports A and B should
point to the corresponding directories. Default values should be all right. Normally, these
directories should be readable and writable from any user (crw-rw-rw-). If not, set the
attributes of these files properly using thechmod command asroot . On Windows the
name of the serial ports are typically COM1 and COM2. To verify the correctness of the
settings, please refer to your main board manual.

◦ In the upper left corner of the robot window, change the popup menu fromSimulated to
Remote Serial A or Remote Serial B according to the port on which the robot
is connected.

◦ A popup window should inform you that everything goes right as depicted in figure 2.14.

2.6. WORKING WITH THE KHEPERA ROBOTS 39

Figure 2.14: Successful serial connection

◦ Click on theOk button and run the simulation. The real robot should move while avoiding
obstacles. You will be able to see the sensor values of the real robot in the robot window
updated in real time.

◦ For timing reasons, the transfer to the real robot needs the speedometer indicates a value
close to 1, which means the simulator runs close to real time. In order to achieve this, you
should choose a time basis for the refresh (i.e., in 8, 16, 32, 64, 128 etc.) which give a ratio
as close as possible to 1. The time basis value will depend on the complexity of scene, the
power of your computer, the complexity of your control algorithm, etc.

2.6.9.2 Cross-compiling for the real Khepera

Here are the steps to follow in order to cross-compile and download the controller to the real
robot:

◦ Load a controller into the simulated robot.

◦ Connect the real robot to one the serial ports of your computer (see the manual of your
robot to proceed).

◦ Set the robot serial mode to 9600 bauds (mode 5) on both the simulated robot and the real
robot. Hence, the jumper configuration of the real robot should correspond to the jumper
configuration of the simulated robot. The jumpers of the simulated robot can be configured
from the widget situated just below the left motor in the robot window.

◦ Check that the serial ports are properly configured by checking the preferences window
(Options menu,Preferences... item). The serial ports A and B should point to the
corresponding directories. Default values should be all right. Normally these directories
should be readable and writable from any user (crw-rw-rw-). If not, set the attributes
of these files properly using thechmod command asroot .

◦ In the upper left corner of the robot window, change the popup menu fromSimulated
to Download Serial A or Download Serial B according to the port on which
the robot is connected.

40 CHAPTER 2. WEBOTS BASICS

◦ If the controller has cross-compiled correctly, a popup window should inform you that the
binary file is being transferred to the real robot (figure 2.15). After that, the controller will
be automatically executed on the robot. If the robot has on-board batteries, you might want
to unplug it from the serial connection.

Figure 2.15: Downloading a cross-compiled controller

2.6.9.3 Software requirements

In order to make use of the cross-compilation feature of Webots 2.0 you must have properly
installed the GNU C based cross-compiler for the Khepera robot in your system. Please refer to
the corresponding software and manuals provided by K-Team to set up such an environment.

2.7 Working with Supervisors

A supervisor is a program similar to a robot controller. However, such a program is not associated
to a robot but to a world. It can be used to supervise experiments. The supervisor program is
able to get information on robots and on some objects in the world (likeBall objects) and to
communicate with robots. A supervisor can be used to achieve the following:

◦ program inter-robot communications.

◦ record experimental data (like robot trajectories).

◦ control experimental parameters.

◦ display useful information from robots.

◦ define new abstract sensors.

◦ control the Alice robots.

Like with robot controllers, a GUI library is available to set up windows with buttons and other
widgets. Such windows are useful to display and control what’s going on in the experiment.
Supervisor programming is described in chapter 5 of this manual.

2.8. WORKING WITH THE ALICE ROBOT 41

2.8 Working with the Alice robot

2.8.1 Alice overview

Figure 2.16: The Alice robot

The Alice robot is a very small and cheap autonomous mobile robot. It was developed by Gilles
Caprari from EPFL - DMT - ISR - ASL. Its size (23mm x 21 mm x 16 mm) makes it suitable
to study collective behavior with a large quantity of robots on a table. Two watch motors with
wheels and tires can drive Alice at a speed of 20 mm per second. A PC16C84 microcontroller
with 1Kword of EEPROM program memory allows developers to reconfigure its intelligence.
This robot is powered by two watch batteries providing it with an autonomy of about 8 hours.

A number of extension turrets can be plugged-in on the top of the robot. The only extension
turret used in Webots is the IRCom turret, which is depicted on figure 2.16.

2.8.2 Programming the Alice robot

In its current configuration, the Alice robot needs to be remote controlled, using an infra-red
remote controller. In order to receive the infra-red signals from the remote controller, Alice needs
an infra-red reception turret called Alice IRCom. Actually, this turret fulfills two functions: (1)
it receives IR signals from the remote controller and (2) two other infra-red sensors can be used
for obstacle avoidance, using the same principle as with the Khepera robot.

This infra-red remote control is modeled within Webots through the use of the Supervisor API.
A supervisor controller can control up to 8 Alice robots in a world by sending them messages.
Hence, there is no Alice controller programs, but only supervisor controllers sending messages
to the Alice robots. Such messages indicate a pre-wired behavior to be executed by the Alice

42 CHAPTER 2. WEBOTS BASICS

robot. This technique, as well as the complete description of messages, is explained later in this
manual.

2.9 Miscellaneous

2.9.1 Hiding and showing the buttons

TheOptions menu allows you to hide or show the two rows of buttons in the world window.
The Hide Edit Buttons item will remove the buttons used for editing the world while
the Hide Simulation Buttons item will remove the buttons controlling the simulation.
When the buttons are hidden, the same menu will allow you to display the buttons back using the
Show Edit Buttons or Show Simulation Buttons items.

2.9.2 Setting up preferences

ThePreferences... item in theOptions menu allows you to set-up the serial port device
files as seen previously and also to set-up a number of default paths and files (see figure 2.17).

Figure 2.17: Webots preferences

The figure 2.17 describes the typical properties on UNIX. On Windows you will findCOM1and
COM2instead of/dev/cua0 and/dev/cua1 and the following directories:C:
Program Files
Webots2.0
worlds , C:
GCC
andC:

2.10. DIRECTORY STRUCTURE 43

Program Files
Webots2.0
controllers .

The Default world is changed each time you quit Webots. It is replaced by the current
world when Webots quits.

The World path is the path in which Webots is looking for world files. It is changed when
successfully loading a world from a new directory.

TheController path is the most important since it is the path in which Webots will look
for controllers directories when loading a world containing a supervisor and / or robots. Note
that Webots will also look in its ownWEBOTSHOME/controllers directory. Hence, if you
load a world and neither the controller path nor theWEBOTSHOME/controllers directories
contain the requested controllers mentioned in this world, then Webots will fail running this
world. So, when setting up your own development environment, we recommand that you create
your owncontrollers directories for robots and supervisors in your home directory (or sub-
directories) and you set up appropriately the corresponding paths in the Preferences window
(although Webots should set it automatically when you load a new controller).

2.10 Directory structure

On UNIX, thewebots directory, typically located in/usr/local , is organized as depicted
in figure 2.18.

webots/ LICENSE.html license agreement for the preview version
biosKhepera cross-compilation library for Khepera
controllers/ controller program examples
images/ images used internally by webots
include/ include files necessary to the controllers
lib/ libraries needed by the controllers
webots Webots application
webotsrc default .webotsrc file
webots.key license file
webots.xpm Webots logo
worlds/ environment examples

Figure 2.18: Webots directory structure

On Windows the structure is almost the same (see figure 2.19).

44 CHAPTER 2. WEBOTS BASICS

webots/ LICENSE.html license agreement for the preview version
biosKhepera cross-compilation library for Khepera
controllers/ controller program examples
images/ images used internally by webots
include/ include files necessary to the controllers
lib/ libraries needed by the controllers
webots.exe Webots executable
webotsrc default .webotsrc file
webots.key license file
windows.html Information for the Windows user
worlds/ environment examples

Figure 2.19: Webots directory structure

Chapter 3

Sample Webots Applications

This chapter provides an overview of the sample applications provided within the Webots pack-
age. All these examples correspond to world files located in thewebots/worlds directory
and can be easily tested while reading this chapter. The source code for the examples is located
in the webots/controllers directory. For each example, a short description is provided.
However, this description does no attempt to be exhaustive and should be considered as an intro-
duction. More details can be found in the source code.

3.1 simple.wbt

This is the default world. It is a very simple square area with a few colorful boxes and a Khep-
era robot. The Khepera has a Braitenberg controller (source code in thebraiten.khepera
directory) and no extension turret, and therefore moves forward while avoiding obstacles.

45

46 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

3.2 five.wbt

Figure 3.1: five.wbt

This example is a bit more interesting since five Khepera robots are moving in a maze. Each of
these robots has a Braitenberg controller loaded. Running the simulation will make all the robots
move in the maze while avoiding each other as well as obstacles. It can be entertaining to select
one robot and choose theRobot View item in theSimulation menu, then to zoom on this
robot using the control wheels for navigating in the scene. The source code for these controllers
is in thebraiten.khepera directory.

3.3. PHOTOTAXY.WBT 47

3.3 phototaxy.wbt

Figure 3.2: phototaxy.wbt

This example makes use of the light measurement capability of the infra-red sensors of the Khep-
era robot. A light source is set in the center of the environment and the robot uses light measure-
ment information to try to find it. You will see the robot moving toward the light and avoiding
the foot of the light (which is an obstacle) and going away from the light, then coming back and
so on. The source code for this controller is in thephototaxy.khepera directory. It can be
entertaining to drag the light source with the move cursor, to observe the robot running after the
light.

48 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

3.4 jumper.wbt

Figure 3.3: jumper.wbt

In this example, the robot is not moving. However, interesting things will happen. Run the
simulation and double-click on the robot to have the robot window displayed. Then, click on the
jumpers on the robot window (jumpers are just below the left motor of the robot). You will be
able to observe that setting the left most jumper will cause the right most LED of the robot to
be switched on. Unsetting this jumper will cause the same LED to be switched off. The middle
jumper controls the other LED, while the last jumper has no effect. The source code for this
controller is in thejumper.khepera directory.

3.5. FINDER.WBT 49

3.5 finder.wbt

Figure 3.4: finder.wbt

This example shows how to use the Panoramic turret to reach a blue target cylinder situated
in the center of the environment. The robot controller has two behaviors: (1) look for a dark
object in the linear vision array and turn to set this object in the center of the field of view and
(2) go forward and avoid any obstacle. As a result you will be able to observe the robot going
very efficiently towards the blue cylinder and then turning around the cylinder. This can be
explained by the fact that the cylinder is also an obstacle and the obstacle avoidance behavior has
a strongest priority over the goal seeking behavior. The source code for this controller is in the
finder.khepera directory.

50 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

3.6 can.wbt

Figure 3.5: can.wbt

This example demonstrates two Khepera robots equipped with Gripper turrets and running the
same controller program. The robots look for small objects which can be grasped by the gripper.
Such objects are identified through the use of infra-red sensor distance measurements. If only
one or two sensors in front of the robot are sufficiently excited and no other sensor is excited, then
the robot deduces it faces a small object, which can be grasped by the gripper. Then, it moves
the gripper down, grasps the object and moves the gripper up. After that, the robot continues
moving, looking for another object to grasp. When it finds one, it puts down the object it held on
its side and grasps the newly found object. And this behavior is repeated for ever... The source
code for these controllers is in thecan.khepera directory.

3.7. ATTACKER.WBT 51

3.7 attacker.wbt

Figure 3.6: attacker.wbt

The Khepera robots are trying to score a goal on a soccer field! In order to achieve this, the
robots use some image processing from the K6300 turret to localize the ball and the goal. Then,
the robots move to the right position to kick the ball in order to get it closer to goal. The robots
will repeat this behavior 3 or 4 times before a goal is scored. A supervisor process is responsi-
ble for counting and displaying the goals, as well as for setting the robots and the ball to their
initial position after a goal is scored. The source codes for these controllers are in theat-
tacker blue.khepera andattacker yellow.khepera directories.

52 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

3.8 buffer.wbt

Figure 3.7: buffer.wbt

This example demonstrates how it is possible to exchange information between a supervisor and
a robot. The robot is communcating with the supervisor to say when it feels an obstacle in front
of it. Then, the supervisor decides that if the object is close enough to the robot, the robot should
turn on one LED. The supervisor, then, sends a message to the robot meaning to turn on (or off)
the LED. Similar methods can be used to implement some communication between robots via
the supervisor. The source code for the supervisor is in thebuffer.supervisor directory
and the source code for the robot controller is in thebuffer.khepera directory.

3.9. TOWN.WBT 53

3.9 town.wbt

Figure 3.8: town.wbt

This example was developed by Gérald Foliot (Lyon 2 University, France). It models a city
sized for the Khepera robot with buildings, streets, rivers, parks, trees, etc. in which you can run
your own experiments. Such an environment is well suited for navigation tasks because a lot of
landmarks can be recognized by the robots equipped with vision sensors. Note that this world
makes an extensive use of VRML 97 nodes which were not created with Webots, but with a text
editor.

54 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

3.10 house.wbt

Figure 3.9: house.wbt

This example, also developed by Gérald Foliot, models a simple schematic house sized for the
Khepera robot with doors, windows, corridors and rooms in which you can run your own exper-
iments. Such an environment is well suited for indoor navigation tasks for which the problem of
recognizing and passing doors is an important issue. The robot is equipped with a vision sensor
since it seems to be the most suitable type of sensor for such environments. Note that this world
makes an extensive use of VRML 97 nodes which were not created with Webots, but with a text
editor.

3.11. CHASE.WBT 55

3.11 chase.wbt

Figure 3.10: chase.wbt

This experiment shows a record of the genetic evolution of neural networks for the prey-predator
experiment developed by Dario Floreano (LAMI - EPFL, Switzerland). The robot with the K213
vision turret is the predator and is trying to catch the prey while the prey relies only on infra-red
sensors to escape from the predator. Note that the prey is equipped with a Panoramic turret but
it doesn’t use it at all. It stands here just because of its shape and color to help the predator
seeing the prey! This experiment is a good example of communication between the supervi-
sor and the robots. The source codes for this experiment are in thechase.supervisor ,
predator.khepera andprey.khepera directories.

56 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

3.12 stick pulling.wbt

Figure 3.11: stickpulling.wbt

This experiment of collective robotics was developed by Auke-Jan Ijspeert (IDSIA, LAMI-
EPFL, Switzerland). Five robots collaborate to extract wood sticks from the ground. These sticks
are too long to be extracted by a single robot equipped with a gripper, hence, the robots find,
grasp, pull the stick and wait for help from another robot. The source code for this experiment is
in thestick pulling.supervisor andstick pulling.khepera directories.

3.13. ALICE.WBT 57

3.13 alice.wbt

Figure 3.12: alice.wbt

This example shows how to control several Alice robots from a supervisor by sending messages
to the robots. A graphical user interface allows the user to select an Alice robot though a popup
menu and send it some command. The source code for the supervisor controller is in theal-
ice.supervisor directory.

58 CHAPTER 3. SAMPLE WEBOTS APPLICATIONS

Chapter 4

Programming with the Khepera API

4.1 My first Khepera program

4.1.1 Source code

Here is one of the simplest C program you can write to control the Khepera robot:

#include <Khepera.h> /* We just need Khepera stuff */
void main()
{

khepera live(); /* Initializes the robot */
for(;;) /* Endless loop */
{

khepera set speed(LEFT,5); /* Set the motors to */
khepera set speed(RIGHT,5); /* the same speed, */
khepera step(64); /* run one step of 64 ms */

} /* and repeat this forever... */

}

This very simple program will make the Khepera robot move forward until it bumps into an
obstacle, if ever. The speed of the Khepera will be of 40 mm/s since the speed unit is 8 mm/s for
thekhepera set speed function. If you set different speeds to each motor, you will observe
the robot follows a circular trajectory. You may also set negative speed values and observe the
robot going backwards. Finally, if you set opposite values to the left motor and to the right motor,
you will be able to see the robot spinning on itself like a top.

This program, however, illustrates some fundamental aspects of programming a robot within
Webots. As you can see, such a program never ends. It first performs some initialization and
enters an endless loop. So, it is not possible to exit the program from itself.

Warning: Never invoke theexit() C function in a controller: this would freeze
things up in the simulator.

59

60 CHAPTER 4. PROGRAMMING WITH THE KHEPERA API

4.1.2 Controller directory structure

The source code listed above is indeed the contents of a C source file namedcrazy.c which lies
in the crazy.khepera directory (in thecontrollers directory). This name was chosen
because the behavior of such a robot is somehow “crazy”. Each controller directory’s name
ends up with a.khepera suffix. Other examples of.khepera directories are provided in the
webots/controllers directory. Let’s observe what is needed in a controller directory by
listing thecrazy.khepera directory.

On UNIX:

ls crazy.khepera
Makefile crazy.c crazy.o crazy

TheMakefile is used to define the compilation procedure when themake command is used
(typeman make, for more information onmake).

Thecrazy.c file is the C source code for the controller we have just seen above.

Thecrazy.o file is the object file generated by the compilation ofcrazy.c .

Thecrazy file is the executable file that is launched by Webots.

On Windows:

dir crazy.khepera

makefile.scp
Makefile.vc6
Makefile.gcc
crazy.c
crazy.exe

The Makefile.vc6 andMakefile.gcc are used to define the compilation procedure re-
spectively for the Microsoft Visual C++ 6.0, and CygWin compilers. TheMakefile.scp is
used by Webots to decide which compiler to use for building the controller program. You can
edit all these files in a text editor (like notepad) to have more informations or to modify them.

Thecrazy.c file is the C source code for the robot controller.

Thecrazy.exe file is the executable file that is launched by Webots.

As a result of the compilation ofcrazy.c you will see some others files appear likecrazy.o
or crazy.obj .

4.1. MY FIRST KHEPERA PROGRAM 61

4.1.3 Compiling the controller

On UNIX, the controller can be compiled from the shell by issuing the following command:

make

However, you won’t be able to compile this controller unless you are logged in asroot , because
you are not allowed to write in the webots directory. To compile it, you will first have to get a
local copy of this controller as explained in the next subsection.

On Windows, the controller can be compiled from the DOS console. You have to go in that
directory first, then, you can type the following command:

nmake /f Makefile.vc6

if you are using Microsoft Visual C++ 6.0 compiler, or

make -f Makefile.gcc

if you are using the Cygwin compiler.

Note that the compilation commands described are written in themakefile.scp . In this file
the lines starting with a “;” or “#” character are remarks. The first uncommented line must
contain the compilation command that Webots will execute for the automatic compilation pro-
cedure. The optionnocompilation makes Webots skip the automatic compilation (i.e., you
must compile the controller on your own from the DOS console as described earlier). Also, the
absence of themakefile.scp file makes Webots skip the compilation stage.

4.1.4 Modifying the controller

On UNIX, to test the whole editing / compilation / run process, you can copy the wholecrazy.khepera
directory in your home directory:

cd ˜
mkdir webots
cd webots
mkdir controllers
cd controllers
cp -r /usr/local/webots/controllers/crazy.khepera .

62 CHAPTER 4. PROGRAMMING WITH THE KHEPERA API

and try to modify thecrazy.c file (by changing the value of the right speed to -5 instead of 5,
for example). Save the modified file and run themake command. If no compilation errors occur,
new object and executable files should be created. You can now launch Webots and load your own
crazy.khepera as a controller for a robot (be careful to select your own directory you have
just created and not the default one which is usually/usr/local/webots/controllers).

On Windows, you can easly copy the whole directorycrazy.khepera in your own project
directory by using theWindows resource manager . This way, you can modify the con-
troller without loosing the original file.

From there, you can again modify thecrazy.c source file. You can also add header files or new
source files and modify theMakefile (on UNIX), theMakefile.gcc or makefile.vc6
(on Windows) according to the source files which need to be compiled. It’s much easier to build
your own system starting from such an example rather than starting from scratch.

Note that the prefix of the name of a controller directory (i.e.,my controller.khepera)
must be the same as the name of the executable file (i.e.,my controller). If this is not true,
Webots will be unable to launch your controller.

4.2 Webots execution scheme

4.2.1 Khepera controllers

Indeed, the controller programs are under the control of the Webots simulator. In other words,
they can be launched and quitted only by the simulator. The simulator operates during thekhep-
era step function. During this function call, it computes the requested sensor values and
updates the position of the robot according to the motor values. Then it can either:

◦ return to the execution of the controller (Run andFast modes).

◦ suspend the execution of the controller (Step andStop modes).

◦ exit from and destroy the controller (when loading another controller, cutting the robot, or
quitting Webots).

Thekhepera step function simulates a number of milliseconds of a real robot running. Re-
quested sensors have to be enabled before callingkhepera step and their values will be avail-
able after this call. Actuator commands have to be requested before calling tokhepera step ,
so that they are actually performed during this call. The figure 4.1 summarizes the structure of a
standard controller program.

An explanation for the MODULE, SENSOR, and ACTUATOR concepts is given later in this
chapter.

4.2. WEBOTS EXECUTION SCHEME 63

MODULE_enable_SENSOR

MODULE_set_ACTUATOR

Control Algorithm

MODULE_get_SENSOR

khepera_step

Figure 4.1: Structure of a controller program

4.2.2 Other controllers

Thewebots program successively calls the robot controllers and the supervisor program, if any.
Here is the sequential order of such operations which are executed once during theStep mode
and continuously during theRun andFast modes.

◦ Execute thekhepera step or supervisor step function for each controller (this
includes the simulation of actuators and sensors).

◦ Simulate other things within Webots simulation (like theBall movement).

◦ Update the display of the world (if not inFast mode).

64 CHAPTER 4. PROGRAMMING WITH THE KHEPERA API

4.3 Getting sensor information

For each sensor you need, you will have to declare that you request the computation of the
simulated sensor by a function call looking likeMODULEenable SENSOR, whereMODULE
can be replaced either bykhepera , k213 , k6300 , gripper , or panoramic andSENSOR
can be replaced either by one ofjumper , position , proximity , light , speed , arm,
grip , presence , resistivity , raw , etc. By default, no sensor computation is performed,
so it is important to request explicitly the sensors you need. You can also disable some sensors if
you don’t need them any more using the correspondingMODULEdisable SENSORfunction.

The following sample program implements a simple Braitenberg vehicle1:

#include <Khepera.h>
#include "braiten.h"

/* Interconnection matrix between IR proximity
sensors and motors */

int32 Interconn[16] =
{-5,-15,-18,6,4,4,3,5,4,4,6,-18,-15,-5,5,3 };

main()
{

int32 i,left speed,right speed;

khepera live();
khepera enable proximity(IR ALL SENSORS);
for(;;) /* Khepera never dies! */
{

left speed = 0;
right speed = 0;
for(i=0; i<8; i++)
{ /* Connections sensors-motors */

right speed += khepera get proximity(i)*Interconn[i];
left speed += khepera get proximity(i)*Interconn[8+i];

}
left speed /= 400; /* Global gain */
right speed /= 400;
left speed += FORWARDSPEED; /* Offset */
right speed += FORWARDSPEED;
khepera set speed(LEFT,left speed); /* Set the motor */
khepera set speed(RIGHT,right speed); /* speeds */
khepera step(64); /* Run one step of 64 ms */

}
}

1 Braitenberg V., “Vehicles: Experiments in Synthetic Psychology”, MIT Press, 1984.

4.4. CONTROLLING ACTUATORS 65

This controller introduces infra-red sensor proximity readings which are used to drive the robot
wheels so that the robot can avoid obstacles on its way. It is provided as an example controller in
thebraiten.khepera directory. Theint32 type corresponds to a signed integer on 32 bits.
Other similar useful types are defined in thetypes.h include file. They should always be used
to avoid platform dependent problems occuring when porting your software to another system.

Sensor values can be read by using the following genericMODULEget SENSORfunction (see
Reference Manual for details).

Here is the list of all the sensors available with the basic Khepera robot:

◦ proximity : 8 infra-red sensors used to measure the distance from the obstacles.

◦ light : the same 8 infra-red sensors used to measure the level of ambient light.

◦ position : value of the incremental encoder on each wheel (useful for odometry pur-
poses).

◦ speed : velocity of each motor wheel.

◦ jumper : configuration of the jumpers on the upper side of the robot.

4.4 Controlling Actuators

Unlike sensors, actuators don’t need to be enabled or disabled. They are always available. The
genericMODULEset ACTUATORfunctions are used to send values to actuators. The actuators
of the basic Khepera robot include:

◦ led : the two LEDs which stand on the upper side of the robot.

◦ position : the internal value of each of the two incremental wheel encoders.

◦ speed : velocity of each of the motor wheels.

4.5 Working with extension turrets

Extension turrets can be plugged into the K-Bus of the robot as explained in chapter 2. In
order to use extension turrets in controllers, you will have to include the corresponding in-
clude file (KheperaK213.h , KheperaK6300.h , KheperaGripper.h or Khepera-
Panoramic.h). Then, you will be able to use a number of functions to read sensor information
or write motor commands which are specific to the turret you declared. The syntax and usage of
each of these functions is detailed in the Reference Manual.

66 CHAPTER 4. PROGRAMMING WITH THE KHEPERA API

4.5.1 K213 turret

This turret features a 1D black and white linear camera device (see figures 4.2 and 4.3). It is
commercially available from usual Khepera distributors.

This turret is useful for equipping the Khepera with a simple visual perception system. Many
applications can take advantage of such a system including, but not limited to, landmark recog-
nition (natural optical pattern or bar code), optical flow, light source identification and visual
stimuli classification.

The image produced by this camera is a 64 x 1 pixel image in 256 grey levels corresponding to a
front view of 36 degrees (see figure 4.4). The pixel intensity is optimized to improve the contrast.

4.5.2 K6300 turret

This turret helds a 2D color camera digital device (see figures 4.5 and 4.6). Image processing
can be performed by the robot itself.

The real turret corresponding to the K6300 turret in Webots will be available commercially for
the Khepera robot soon. The black and white version will be called K5300 while the color
version will be called K6300. However, since the real turret is still a prototype at the time, the
model included in Webots may differ from the real device.

Thek6300 get red , k6300 get green andk6300 get blue functions are used to get
RGB values of the image captured by the camera. These functions are implemented as macros or
inline functions and hence are very efficient. However, you might want to use another function
to get a pointer to an array containing the same data. Thek6300 get image function returns
such a pointer, which might be more convenient, depending on the way you want to read the
data.

In order to allow robots to recognize each other, for soccer games for example, the color of the
K6300 turret can be defined using the RGB text fields in the robot window depicted in figure 4.7.
In order to get faster simulations, the display of the image can be disabled by using the image
check box.

4.5.3 Gripper turret

The gripper turret (see figures 4.8, 4.9 and 4.10) allows the robot graspCan objects. Such
objects can be transported to another location and put down on the floor by the robot. The
can.khepera controller is a good example to start programming with the gripper.

Two motor commands are available on the gripper. The first one controls the position of the
arm which can be set down, up, or in an intermediate position using thegripper set arm
function. The position of the arm is an integer value which ranges from 0 to 255, but the useful
range is [160,255]. A value of 255 means that the gripper is down in front of the robot while

4.5. WORKING WITH EXTENSION TURRETS 67

a value of about 160 means that the gripper is up. The second motor command controls the
position of the grip itself, that is, the two fingers of the device. You can close or open this device
with thegripper set grip function, but no intermediate position is available.

However, when you close the gripper on an object, the object will stop the run of the grip at
a given position. The position is indeed the size of the object and can be measured using the
gripper get grip function.

The gripper turret also features two interesting sensors, which are an optical barrier and a re-
sistivity measurement device. The first allows Khepera to detect if an object is inside the grip
before or after the grip is closed by using thegripper get presence function. The second
allows Khepera to measure the electrical resistivity of a gripped object by using thegrip-
per get resistivity function.

TheK-Bus button is reserved for future use. It is currently not possible to plug-in an additional
turret over the gripper turret. Such a feature will be introduced in further versions.

The gripper can be controlled from the keyboard like the robot. You will have to press the SHIFT
key simultaneously with the arrow keys of your keyboard to move the gripper up or down. You
can also type a new value for the gripper arm position or use the little arrow buttons close to
thearm text field. The space bar, or theGripper button allows to open or close the gripper.
However,Can objects cannot be grasped this way. Grasping ofCan objects may occur only
when the robot controller is running (Run, Step or Fast modes).

4.5.4 Panoramic turret

The real panoramic turret is actually not commercially avaible for the Khepera robot (see figures
4.11, 4.12 and 4.13). It is currently a prototype developed at LAMI - EPFL by Yuri Lopez de
Meneses. This turret provides a black and white linear panoramic view around the robot. It
covers 240 degrees on a linear array of 150 pixels. Each pixel has a resolution of 64 grey levels.

The sensors on this turret correspond to the different types of data you can get from the artificial
retina. They includeraw image data and some filtered image data (see the reference manual
for more info on these filters). The raw data can be obtained from thepanoramic get raw
function. Thepanoramic set parameters function is used to set a number of parameters
for filtered images.

Thepanoramic set window function allows one to optimize the speed of sensor computa-
tion by reducing the angle of view of the camera. It defines a window within the 150 pixel array
that will be computed instead of computing each of the 150 pixels.

Finally, thepanoramic set precision function can be used to reduce the resolution of
each grey level pixel. This precision is expressed in bits and ranges from 1 to 6 bits (i.e., from
black and white up to 64 grey levels).

The grey levels can be represented as a graph and / or as actual grey levels. Each representation
can be disabled through the corresponding check box to achieve faster simulation.

68 CHAPTER 4. PROGRAMMING WITH THE KHEPERA API

Figure 4.2: The real K213 turret

4.5. WORKING WITH EXTENSION TURRETS 69

Figure 4.3: The simulated K213 turret

Figure 4.4: The robot window for the K213 turret

70 CHAPTER 4. PROGRAMMING WITH THE KHEPERA API

Figure 4.5: The real K5300/K6300 turret

4.5. WORKING WITH EXTENSION TURRETS 71

Figure 4.6: The simulated K6300 turret

Figure 4.7: The robot window for the K6300 turret

72 CHAPTER 4. PROGRAMMING WITH THE KHEPERA API

Figure 4.8: The real gripper turret

4.5. WORKING WITH EXTENSION TURRETS 73

Figure 4.9: The simulated gripper turret

Figure 4.10: The robot window for the gripper turret

74 CHAPTER 4. PROGRAMMING WITH THE KHEPERA API

Figure 4.11: The real panoramic turret (prototype)

4.5. WORKING WITH EXTENSION TURRETS 75

Figure 4.12: The simulated panoramic turret

Figure 4.13: The robot window for the panoramic turret

76 CHAPTER 4. PROGRAMMING WITH THE KHEPERA API

Chapter 5

Programming with the Supervisor API

The Supervisor API is very useful to control experiments, to record interesting data like sensor
information, robot trajectory, or any statistics, to introduce abstract sensors, to make the robots
communicate with each other, etc.

5.1 EAI: External Authoring Interface

The External Authoring Interface API allows the supervisor controller to read and edit the world
loaded in the simulator. This API is quite similar to the VRML 97 External Authoring Interface
allowing Java applets to communicate with VRML 97 scenes within a Web browser. In our case,
the supervisor controller process is able to communicate with the simulator in a similar way.

5.1.1 Getting a pointer to a node

Each object in the world is called a node (like VRML 97 nodes). Each node can have specific
name, called DEF name, which is given by the designer of the world. Such a DEF name can be
defined from Webots by clicking on theNamebutton in the properties window of an object. This
DEF name can then be used by the supervisor process to get a pointer to that node by issuing the
following function call:

#include <eai.h>

eai node pointer to my node;

pointer to my node = eai get node(‘‘MyNode’’);

77

78 CHAPTER 5. PROGRAMMING WITH THE SUPERVISOR API

5.1.2 Reading information from the world

The EAI functionseai get xxx (wherexxx can be replaced byposition , orientation ,
color , etc.) allow the supervisor process to read informations on the position, orientation,
color, etc. of a number of nodes in the world. The first (and sometimes the only) argument of
the eai get xxx functions is always a pointer specifying the node from which we want to
read information. See the reference manual for a complete list and description of the different
eai get xxx functions.

5.1.3 Editing the world

5.1.3.1 eaiset xxx

The EAI functionseai set xxx (wherexxx can be replaced byposition , orientation ,
color , etc.) allow the supervisor to change the position, orientation, color, etc. of a number
of nodes in the world. It is for example possible to change dynamically the controller of a
robot by calling theeai set controller function with the name of the new controller as
an argument. The first parameter of the eaiset xxx functions is always a pointer specifying the
node which is going to be altered. The following arguments depend on what kind information
needs to be altered. For example, changing the color of a node will require to pass a pointer
to the node as the first argument and the red, green and blue levels as the second, third and
fourth argument. See the reference manual for a complete list and description of the different
eai set xxx functions.

5.1.3.2 eaideletenode

The EAI functioneai delete node is useful to delete nodes from the world. The is currently
no way to create new nodes from the supervisor.

5.1.3.3 eairefresh world

If the simulator is not running inRun mode, i.e., not updating regularly the scene, then the
changes performed with aeai set xxx function will not be visible in the scene until the dis-
play is updated. In order to force to refresh the display of the world, the supervisor process can
use theeai refresh world function.

5.1.4 Sending messages to the robots

5.1.4.1 Overview

The only way to control Alice robots in Webots is to send them messages corresponding to
behaviors. In order, to proceed, it is necessary to get a pointer to the Alice robot we want

5.1. EAI: EXTERNAL AUTHORING INTERFACE 79

Command Identifier Number of bytes

ALICE FORWARD 1 1
ALICE BACKWARD 2 1
ALICE RIGHT 3 1
ALICE LEFT 4 1
ALICE SENSORSOFF 5 1
ALICE SENSORSON 6 1
ALICE STOP 8 1
ALICE FOLLOWRIGHT ANDTURN 9 1
ALICE FOLLOWLEFT ANDTURN 10 1
ALICE FOLLOWRIGHT 11 1
ALICE FOLLOWLEFT 12 1
ALICE STEP RIGHT + parameter 13 2
ALICE STEP LEFT + parameter 14 2

Table 5.1: Alice Messages

to control by using theeai get node function. Then, the supervisor controller can send it
messages using theeai write stream functions.

The same principle can be used to send messages to the Khepera robot. However, in this case,
you will have to program your Khepera controller so that it handles the messages sent from the
supervisor.

5.1.4.2 Messages for the Alice robot

The messages sent to the Alice robot must be composed of one or two bytes as described in the
table 5.1.

Most of these commands are self explanatory. However, a couple of them need more explana-
tions.

TheALICE SENSORSOFFandALICE SENSORSONallows the supervisor to turn off and on
the obstacle avoidance in theALICE FORWARDbehavior. By default, this behavior performs
obstacle avoidance.

The ALICE STEP RIGHT andALICE STEP LEFT commands need an extra byte parameter
which indicate the number of steps to be performed. This byte needs to follow immediately the
first command byte in the message.

5.1.4.3 Encoding

For compatibility issues with the real robot, each message must be encoded in the following way:
The first byte contains the robot identifier and the associated command. Optionally a second byte

80 CHAPTER 5. PROGRAMMING WITH THE SUPERVISOR API

contains a parameter. The first byte is organized as described in figure 5.1.

address command

[0 - 15][0 - 7]

0

Figure 5.1: Command byte for the Alice robot

The parameter byte when used, contains an integer value coded on the 7 less significant bits
(LSB) of the byte as depicted in figure 5.2.

sign1 absolute value

[0 - 63]

Figure 5.2: Parameter byte for the Alice robot

The sign bit has the following meaning: 0 means positive and 1 means negative. Hence, the
parameter value range ranges from -63 to +63.

The example of a supervisor controller for Alice, described in this manual, is available within
the Webots package.

Chapter 6

Using GUI: the Graphical User Interface
API

Robot controllers as well as the supervisor controller can take advantage of using a simple yet
powerful graphical user interface: the GUI, standing for Graphical User Interface. This API
(Application Program Interface) allows controllers to open windows, to display texts, graphics
and widgets, to handle events coming from the user, like mouse movements, key pressing, etc. It
is very convenient to improve the interactivity between the user and the simulation.

This chapter is a tutorial for understanding and using the GUI. However, it does not provide an
exhaustive description of this API. See the Reference Manual for an exhaustive description of
the GUI.

6.1 Basics

6.1.1 Include file and library

In order to use the GUI, your controller programs will have to include thegui.h file which
stands in thewebots/include directory. No additional library is required at link time since
the GUI is fully contained into theController library. So, here is the first line of code to get
started with the GUI:

#include <gui.h>

6.1.2 GUI objects

Different kinds of objects can be used to create a graphical user interface. They are classified
into five categories:

81

82 CHAPTER 6. USING GUI: THE GRAPHICAL USER INTERFACE API

◦ windows:window

◦ gobs (graphical objects):arc , image , label , line , rectangle

◦ widgets:button , checkbox , popup , textfield

◦ invisible objects:pixmap, timer

◦ utility objects:color , event , screen

6.1.3 Constants

In the GUI, constants are all uppercase starting with the prefixGUI . Constants are defined for
the colors, the events, the keys, etc.

6.1.4 Functions

In the GUI, all function names start with the prefixgui . This prefix is generally immedi-
ately followed by the name of an object (likewindow , rectangle or button), then an
underscore:, then an action associated to this object (likenew, delete , change color , or
get value). For example, the functiongui rectangle change color is used to change
the color of a rectangle.

6.1.4.1 Constructor functions

Constructor functions are used to create new instances of objects. They look like the following
prototype:gui xxx new wherexxx is the name of an object to be created. They apply to all
kind of objects except utility objects. A constructor function takes a number of arguments used to
define the object. See the Reference Manul for a complete description of the various constructor
functions.

Note: For a gob or a widget, the first argument is always the handle of the window in which it is
created while the second and third arguments are always its x and y coordinates in the window
coordinates system. Then, the following arguments define more precisely the object and are
described in the reference manual.

6.1.4.2 Destructor functions

Destructor functions look like this:gui xxx delete . Like constructor functions, they apply
to all kind of objects except utility objects. The first and only argument of these functions is
a handle to the object to be destroyed. A destructor function frees the memory allocated for
the object passed as an argument. Moreover, it makes the object disappear from the screen,

6.1. BASICS 83

or window where it was. After calling the destructor of an object, no further reference to that
object can be done otherwise, it might crash your program. So, it is recommanded to set the
corresponding handler toNULL immediately after calling a destructor function, unless you are
sure that this handler can no longer be used:

gui pixmap p
...

p = gui new pixmap(...);
...
gui pixmap delete(p);
p = NULL;

6.1.4.3 Read functions

Read functions allow you to read the properties of an object. They apply to any object. These
functions look like this:gui xxx get yyy or gui xxx is yyy wherexxx is the name of an
object andyyy is the name of the property to be read. Thegui xxx is yyy functions always
return a boolean value whereas thegui xxx get yyy may return any type. The first argument
of these functions is a handle to the object. Other arguments may be used to retrieve some values
or specify more precisely the read request. All the read functions are described in detail in the
Reference Manual.

6.1.4.4 Write functions

Write functions allow you to alter the properties of an object. Except for utilitiy objects, the first
argument of a write function is a handle to the object. Write functions can have various forms,
including, but not limited to, the following:

◦ gui xxx set yyy

◦ gui xxx show,

◦ gui xxx hide ,

◦ gui xxx enable ,

◦ gui xxx disable ,

◦ gui xxx activate ,

◦ gui xxx desactivate ,

◦ gui xxx change yyy , etc.

84 CHAPTER 6. USING GUI: THE GRAPHICAL USER INTERFACE API

wherexxx is the name of the object andyyy (if any) is the name of the property to be changed.
Usually thegui xxx set yyy functions will change the propertyyyy of an objectxxx with-
out redisplaying it, whereas thegui xxx change yyy function will change the propertyyyy
of an objectxxx and redisplay it. For example, thegui rectangle change color will
change the color of the specified rectangle and redisplay it.

6.2 Getting started

The very first thing to do, when designing a graphical user interface, is to create a first window.
This can be achieved by issuing agui window new function:

gui window my window;
...

my window = gui window new(‘‘My First
Window’’,10,10,200,100);

Note: the controller program must always be initialized first, that is thexxx live function
(wherexxx may besupervisor , or khepera) should be called before attempting to use any
of the GUI functions.

Now, in order to add some text in this window, we will use the following function:

(void)gui label new(my window,20,20,’’Hello world!’’);

This function returns a handle to the new label object it has created, but since we don’t need it,
we will just ignore the return value of this function by casting it tovoid .

After this stage, your window exists and contains some text label, but it is not visible on the
screen. In order to make it appear, you will have to use another function:

gui window show(my window);

Now, we have a very simple yet complete graphical user interface working within a controller
program.

6.3 Editing, adding and deleting gobs

6.3.1 Editing gobs

In order to make this simple graphical user interface more useful, it may be interesting to dynam-
ically change the text of the label we just created according to the internal state of the controller
program. This can be achieved by changing a little bit the original program, so that we keep a
handler to that label object:

6.3. EDITING, ADDING AND DELETING GOBS 85

gui label my label;
...

my label = gui new label(window,20,20,’’I am happy
:)’’);

Then, during the execution of the controller, the internal state may be changing and we might
need to change the text of the label:

if (state==SAD) gui label change text(my label,’’I am
sad :(‘‘);

Many write functions allow to change the properties of different objects. Their usage and behav-
ior is explained in the Reference Manual.

6.3.2 Adding gobs

Adding gobs is as simple as this:

gui rectangle my rectangle;

my rectangle =
gui rectangle new(my window,10,40,30,50,GUI RED,true);

According to the Reference Manual, this will create a red filled rectangle at location (10,40) with
a width of 30 pixels and a height of 50 pixels. This rectangle will be immediatly visible. See the
Reference Manual for creating other kind of objects.

6.3.3 Deleting gobs

If ever our label gob is not any more needed, it is possible to delete it, so that it disappears from
the window:

gui label delete(my label);
my label=NULL;

It is also possible to delete the window itself if is not any more needed:

gui window delete(my window);
my window=NULL;

Note: if a window contains some objects (gobs or widgets) which have not been previously
deleted, those objects are automatically deleted with the window. Further reference to them may
produce a crash of the controller program. Hence we should add the following line for sanity:

my rectangle=NULL;

86 CHAPTER 6. USING GUI: THE GRAPHICAL USER INTERFACE API

6.4 Working with widgets

Widgets are a bit more complicated than gobs since they provide user feedback to the controller
program. It is possible to create widgets the same way as for gobs. However, for handling widget
input, some additional code has to be implemented. Widgets include buttons, checkboxes, popup
menus and textfields as shown in figure 6.1.

button

checkbox

popup

textfield

Figure 6.1: Widgets available in the GUI

6.4.1 Events

Events are well known to any programmer dealing with graphical user interfaces. The event
model in the GUI is very simple to understand and use. Different kinds of event in the GUI are
listed here. All of them, except TIMEUP, are a direct consequence of the user action with the
mouse or keyboard:

◦ GUI MOUSEDOWN

◦ GUI MOUSEUP

◦ GUI MOUSEMOVE

◦ GUI KEY DOWN

◦ GUI KEY UP

◦ GUI WINDOWCLOSE

◦ GUI WINDOWRESIZE

◦ GUI TIME UP

◦ GUI WINDOWENTER

◦ GUI WINDOWLEAVE

6.4. WORKING WITH WIDGETS 87

6.4.2 Callback function

The callback function is a function you will write within your program and declare to the GUI,
so that it is called whenever an event occurs:

void my callback()
{

...
}

void main()
{

... /* GUI settings: create a window with objects in-
side */

gui event callback(my callback);
for(;;) supervisor step(64);

}

It is very important that a controller calls axxx step function in a loop after setting the callback
function since this callback function will be called from thexxx step function.

If an event occurs during the execution of thexxx step function, your callback function is
called and it has to retrieve some information about the event to update your program, or do
whatever you want to do upon reception of events. To achieve this, a number of functions can be
used within the callback function:

gui event get type
gui event get info
gui event get widget
gui event get window
gui event get mouse x
gui event get mouse y
gui event get key
gui event get modifier
gui event get timer

In your callback function, you may first want to know what kind (type) of event occured and
you will use gui event get type to achieve this. To distinguish between widget events
and other events, you can usegui event get info function. Then, the other functions will
provide you with more detail about this event. For example, if thegui event get info
tells you that a widget event occured, thegui event get widget will return a pointer to the
widget that caused that event. Note that all functions are not applicable for any type of event,

88 CHAPTER 6. USING GUI: THE GRAPHICAL USER INTERFACE API

but rather they are specific to some types of event. A complete description of these functions is
available in the Reference Manual.

As an example, to check if a button was pressed by the user, the callback function has to look
like the following:

void my callback()
{

gui widget w;

if (gui event get info()==GUI WIDGETEVENT)
{

w = gui event get widget();
if (w==my button) printf(‘‘my button was

pressed!\n’’);
else printf(‘‘Another widget was activated!\n’’);

}
}

The callback function can also use widget functions to retrieve information from a widget, like
the text contained in a textfield just edited by the user. Moreover, it is useful that the callback
function calls other functions to update the state of global variables, display some information to
the user, etc. However, the callback function should never call thexxx step function directly or
indirectly (that is by calling a function [which calls a function, which call a function, etc.] which
calls thexxx step function). If this occurs, then, an undefined behavior will be observed and
the controller will probably crash.

6.5 Going further

The examples provided within the simulator package can be a good starting point to understand
the possibilities of the GUI. Moreover, the Reference Manual covers some issues not discussed
here, like timers.

Chapter 7

Advanced Webots programming

7.1 Hacking the world files

7.1.1 Overview

The world files end up with the.wbt suffix. They lie in theworlds directory. These files
obey Webots file format which is an extension of a subset of the VRML 97 language. VRML 97,
standing for Virtual Reality Modeling Language, is an official standard, widely used for 3D on
the World Wide Web. It features animation and programming capabilities but it is not powerful
enough to model virtual robots equipped with realistic sensors. To view such 3D scenes and
navigate through them, you currently need to add a VRML 97 plugin to your favorit web browser.

Webots file format was implemented as an extension of a subset of VRML 97. Hence, 3D scenes
and animations produced by Webots could easily be ported to VRML 97 to be published on the
World Wide Web.

You can read and edit the world files with a standard text editor. However, if the file is corrupted
because the syntax is not respected, Webots may crash when trying to load the file. Please note
that not all VRML 97 nodes are implemented. Moreover, within the implemented nodes, not all
fields are implemented. So, don’t use nodes or fields that are not implemented, this would cause
Webots to crash.

The Reference Manual gives a complete list of nodes and associated fields currently supported
in the Webots file format.

7.1.2 Robots and Supervisors

Webots file format allows storage of robots and supervisors as parts of environments. Robots
are defined by their position, configuration, and controller code. Supervisors are defined only by
their controller code. A world file should contain no more than a single supervisor.

89

90 CHAPTER 7. ADVANCED WEBOTS PROGRAMMING

7.1.3 Textures

A subset of the VRML 97 texture nodes is supported in Webots 2.0. You might make use of them
to set any image as a texture for a specific shape. Texture files must be in PNG format, and their
location must be specified relative to the world directory (usually, all textures are stored in the
textures subdirectory of theworld directory).

A texture image should have a minimal size of 64 x 64 pixels. Moreover, its width and height
should be a power of two, otherwise, it will be truncated to the first inferior power of two. For
example, if a texture image is sized 150 x 300 pixel, it will be truncated to a 128 x 256 image
before proceeding the rendering.

Textures can be applied toWall , Can, Cylinder , Box and convexIndexedFaceSet
nodes. Please refer to the reference manual to see in detail which are the supported nodes and
corresponding fields.

7.2 Using external C/C++ libraries

All the sample programs in the Webots distribution are C programs which don’t rely on external
libraries. However, it is possible to develop C++ programs as well and to make use of external
libraries. In order to do so, you will have to modify yourMakefile files. Webots include files
are designed to support C++ as well.

7.3 Interfacing with third party software

C and C++ are not the only programming languages in the world of computers. Hence, you
may want to use another programming language to drive your robots or supervisors. Lisp, Java,
Matlab or whatever language can be used within Webots with only a small development effort.
Moreover, interfaces to scientific data display software like gnuplot are also possible and can be
achieved the same way.

Webots needs to dialog with a C or C++ based controller program which is linked with the
controller library. However, this controller program can be just an interface to the third party
software you want to use.

7.3.1 Using a pipe based interface

The communication between this interface controller and the third party software can be achieved
through the use of pipe files as long as the third party software supports reading from and writting
data to a pipe file (which is however very common). Usually, you will want to create two pipe
files, one for the input data coming from the interface controller and going to your third party

7.3. INTERFACING WITH THIRD PARTY SOFTWARE 91

program, and another for the output data, coming from your third party software and going to the
interface controller.

The development of such an interface can be divided into two stages:

1. Develop the interface controller in C. This is the easy part since the exampleinter-
face.khepera is prodived within your webots package

2. Develop the third party software pipe interface.

In order to proceed on the third party software side, you have to look in the user manual of that
software to find out how pipe files are handled.

7.3.2 Using other Inter Process Communication systems

Although they are not covered in the manual, any other Inter Process Communication (IPC)
system could be used to achieve the same purpose. The most interesting, though, would be a
socket-based network interface, so that you can distribute controller computation over a network
of computers. This could prove to be very useful for multi-agent simulations using computer
expensive controllers.

92 CHAPTER 7. ADVANCED WEBOTS PROGRAMMING

Chapter 8

Troubleshooting

This chapter covers a number of known issues that may arise when using Webots. Please read it
carefully. It can help for most common problems with Webots. However, if the problem remains,
please, send a bug report to Cyberbotics.

8.1 Common problems and solutions

Problem: Webots sometimes leaves some controllers or supervisors alive even after quitting.
Such controllers or supervisors are independent processes using system resources. It might
be useful to destroy them in order to release the resources they use.

Solution: On UNIX, the useless controllers should appear in the list of processes by issuing a
ps or a top command. Then, you will get theirpid (process identifier) and will be able
to destroy them with akill command.
On Windows, you can remove the useless controllers by pressing once (and only once, oth-
erwise you risk to reboot your system) the combination of keysCTRL+ALT+DEL. Using
the arrow keys choose the process corresponding to the controller to remove. PressEnter
or click in theEnd Task button.

Problem: Webots crashes each time I launch it.

Solution: Remove the .webotsrc file from your home directory (on UNIX) or from your Win-
dows system directory (on Windows) and relaunch Webots.

Problem: On UNIX, the real robot doesn’t work via the serial link. Webots says “Unable to
open serial port”.

Solution: Check that the permissions of the serial device files are set appropriately. These files
must be readable and writable by all the users. For example, to check/dev/cua0 , you

93

94 CHAPTER 8. TROUBLESHOOTING

can do:
ls -l /dev/cua0
crw-rw-rw- 1 root uucp 5, 64 Aug 27 16:59 /dev/cua0
These are the right permissions. If they are different, you can change them by logging on
as root and typing:
chmod a+rw /dev/cua0

Problem: On Windows, Webots cannot compile any controller present in the original distribu-
tion of Webots.

Solution: Check if your compiler is properly installed in the following way: delete (or rename)
the filemakefile.scp in thecontrollers directory in order to skip the automatic
compilation and try again to load the controller.

Problem: On Windows, Webots cannot compile my own controller program.

Solution: Compile your controller program manually using the console.

8.2 How to I send a bug report ?

If you find a bug in the Webots software, or have a problem which is not covered within the
documentation and the examples, then you could send a bug report to Cyberbotics. In order
to do so, write an e-mail tosupport@cyberbotics.com . This e-mail must contain the
following information:

1. Your name.

2. The version of Webots you use.

3. A complete description of your system configuration: machine, operating system, and
eventually additional hardware like 3D graphics board.

4. A complete description of the bug allowing us to reproduce it step by step.

5. Optionally, some material allowing us to reproduce the bug (i.e., the source code of a
controller program, a world file, etc.).

We really appreacite any bug report. They contribute to the improvement of the quality of our
software. Thank you in advance.

8.2. HOW TO I SEND A BUG REPORT ? 95

96 CHAPTER 8. TROUBLESHOOTING

	Installing Webots
	Hardware requirements
	Registration procedure
	Webots Floating License System
	Registering

	Installation procedure
	PC i386 / Linux
	Macintosh PowerPC / YellowDog Linux, MkLinux or Linux PPC
	Sun Sparc / Solaris
	Windows 95, Windows 98 and Windows NT
	Choose the compiler
	OPENGL32.DLL & GLU32.DLL
	Hardware accelerated graphics cards
	Compiler installation
	The MAKEFILE script
	Cross-compilation
	The preferences file
	Uninstallation

	Webots Basics
	Running Webots
	Running a simulation
	Exporting as animated GIF (UNIX only)
	Controlling the point of view
	Navigating in the scene
	Switching between the World View and the Robot View

	Editing the environment
	Creating, opening and saving worlds
	Adding objects
	Moving objects
	Cut, copy and paste operations
	Changing the Background
	Changing the Ground
	Going further

	Working with the Khepera robots
	Khepera overview
	Creating a simulated Khepera
	Moving the Khepera
	Sensor representation
	Motors representation
	Jumper configuration
	Extension turrets: K-Bus
	Khepera controllers
	Moving to the real Khepera via the serial connection
	Remote control of the real Khepera
	Cross-compiling for the real Khepera
	Software requirements

	Working with Supervisors
	Working with the Alice robot
	Alice overview
	Programming the Alice robot

	Miscellaneous
	Hiding and showing the buttons
	Setting up preferences

	Directory structure

	Sample Webots Applications
	simple.wbt
	five.wbt
	phototaxy.wbt
	jumper.wbt
	finder.wbt
	can.wbt
	attacker.wbt
	buffer.wbt
	town.wbt
	house.wbt
	chase.wbt
	stick_pulling.wbt
	alice.wbt

	Programming with the Khepera API
	My first Khepera program
	Source code
	Controller directory structure
	Compiling the controller
	Modifying the controller

	Webots execution scheme
	Khepera controllers
	Other controllers

	Getting sensor information
	Controlling Actuators
	Working with extension turrets
	K213 turret
	K6300 turret
	Gripper turret
	Panoramic turret

	Programming with the Supervisor API
	EAI: External Authoring Interface
	Getting a pointer to a node
	Reading information from the world
	Editing the world
	eai_set_xxx
	eai_delete_node
	eai_refresh_world

	Sending messages to the robots
	Overview
	Messages for the Alice robot
	Encoding

	Using GUI: the Graphical User Interface API
	Basics
	Include file and library
	GUI objects
	Constants
	Functions
	Constructor functions
	Destructor functions
	Read functions
	Write functions

	Getting started
	Editing, adding and deleting gobs
	Editing gobs
	Adding gobs
	Deleting gobs

	Working with widgets
	Events
	Callback function

	Going further

	Advanced Webots programming
	Hacking the world files
	Overview
	Robots and Supervisors
	Textures

	Using external C/C++ libraries
	Interfacing with third party software
	Using a pipe based interface
	Using other Inter Process Communication systems

	Troubleshooting
	Common problems and solutions
	How to I send a bug report ?

